3D Printing to Study Behavior of 3D Miura-Ori Column Structures

Share this Article

In the recently published ‘Study on the compressive behavior of Miura origami column structure,’ authors I.G.R. Permana, M. Rismalia, S.C. Hidajat, A.B. Nadiyanto, and F. Triawan explored the mechanical properties of Miura-origami patterns. Because their versatility—mainly in foldability—is a source of continued fascination, the researchers chose to study the mechanical behavior when 3D printed.

An ancient Japanese art that is both a source of fascination and reverence around the world, origami is becoming increasingly more popular in engineering applications due to its potential for design in aerospace, energy (such as solar panels), robotics, and more. Some research has also reviewed its potential for energy absorption devices like automotive crash boxes. And while there is little prior knowledge of how Miura-Ori structures function under compressive load, this study investigates the mechanical properties of column structures.

 “The Miura-Ori pattern is constructed with four repeating parallelograms panels which are arranged along the alternating mountain and valley folds as shown in figure 1. The size of each parallelogram for all specimens were kept constant where b = 11 mm and c = 8.66 mm. In this study, the Miura origami column was designed with three folding angle variation (θ = 70o , 90o , 110o ) and two thickness variation (t = 1 mm and 2 mm).”

The unit cell of Miura-Ori pattern.

Front (a) and isometric (b) view of Miura-Ori column structure.

3D printing samples for the research study with PLA, the authors examined variations with both angles in folding and wall thickness of prints. After that, they looked at the energy absorption capacity also. Specimens were comprised of three layers, with compression testing performed and data recorded afterward regarding load and displacement curve.

Specimen dimension.

The researchers discovered that they were able to make the structure stronger by increasing the folding angle of the pattern, realizing that while a low peak force was necessary for the best energy absorption, a high mean crushing force was also required.

“However, due to its geometric constraint, the result showed that the wider folding angle could reduce the energy absorption capacity of the structure,” concluded the researchers. “Finally, the structure with 2 mm wall thickness exhibits higher yield stress, compressive modulus, and energy absorption capacity compared to the 1 mm structure. As a future work, the development of finite element model (FEM) to understand comprehensively the behavior of Miura-Ori column structure will be done.”

Schematic diagram of the compression test.

You might be surprised to find out how often the Japanese inspiration of folding structures and patterns like origami and 3D printing cross paths, from fabrication of metamaterials resulting in a tunable Miura-ori tribe, to expandable structures for engineering applications to mechanisms for creating robots. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

Stress-strain curves of Miura-Ori column with 2 mm thickness

[Source / Images: ‘Study on the compressive behavior of Miura origami column structure]

Share this Article


Recent News

The Maker Movement Unmade? Part 5: The Community Responds

8 Reasons Why 3D Modeling is in Demand in Architecture



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Interview with Tibor van Melsem Kocsis of DiManEx on 3D Printing in the Supply Chain

DiManEx is a Dutch company that wants to bring 3D printing to the supply chain. They’re focussing on one of the most promising and challenging areas in 3D printing, how...

Sponsored

The Top 10 SelfCAD Improvements of 2019

Let’s start 2020 with something positive – reflecting on the awesomeness of 2019. 2019 was a productive year for us at SelfCAD. We listened to your feedback, fixed bugs and...

Korea: 3D Printed Protection Suits for Senior Citizens

In the recently published ‘Developing Fall-Impact Protection Pad with 3D Mesh Curved Surface Structure Using 3D Printing Technology,’ authors Jung Hyun Park and Jeong Ran Lee once again prove our...

Company Profile – Batch Works

This is a brief company profile of Batch.Works. I stumbled upon them as I was looking into different makerspaces in London.


Shop

View our broad assortment of in house and third party products.


Services & Data

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!