AMS

Researchers Use 3D Printed End Plates and Paper Origami Mechanisms to Create Flexible, Inching Robots

ST Dentistry

Share this Article

A team of students and professors from the University of Illinois at Urbana-Champaign have been working on innovative research that illustrates how they used bio-inspired design and origami structures to make small, crawling robots. The research team is with the university’s Department of Mechanical Science and Engineering (MechSE). We’ve seen origami, 3D printing, and robotics combined before, but the MechSE team’s robots are much smaller, and inspired by a common theme in creatures with flexible bodies, like Venus Flytraps, earthworms, and uni-flagellated bacteria that swim through liquid, that rapidly snap their bodies to move, which saves energy while also allowing them to move quickly.

Assistant professors Aimy Wissa and Sameh Tawfick led the team, together with graduate student Alexander Pagano and undergraduates Tongxi Yan and Brian Chien. They built and actuated mechanisms and machines, using the principles of origami folding, that could potentially be integrated with inexpensive, small robots or “deployable adaptive structures.”

Assistant professors Aimy Wissa and Sameh Tawfick, along with graduate student Alexander Pagano and undergraduates Tongxi Yan and Brian Chien. [Image: University of Illinois College of Engineering]

The team published its research in an invited paper, titled “A crawling robot driven by multi-stable origami,” in Smart Materials and Structures.

Wissa explained, “This paper presents the design of a bio-inspired crawling robot. The robot uses origami building blocks to mimic the gait and metameric properties of earthworms and directional material design to mimic the function of the setae on earthworms that prevents backward slipping.”

The team created two origami-inspired robots: the 51 mm wide Poly, and the untethered Peri, 106 mm wide and powered by batteries. They used a laser cutter to cut paper for the folding origami mechanisms that allow the robots to inch along, and 3D printed the small, clear faceplates for the ends of the two robots. While we have seen 3D printing and origami combined in order to make self-folding implants, the researchers have to fold the origami for this project by hand.

For the project, the researchers investigated the Kresling crease origami pattern. This pattern has a polygonal base and a chiral tower, and, similar to how a screw works, combines its contraction and expansion with both rotational and longitudinal motion.

The abstract explains, “We design the origami to have multi-stable structural equilibria which can be tuned by changing the folding CP. Kinematic analysis of these structures based on rigid-plates and hinges at fold lines precludes the shape transformation associated with the bistability of the physical models. To capture the kinematics of the bi-stable origami, the panels’ deformation behavior is modeled utilizing principles of virtual folds. Virtual folds approximate material bending by hinged, rigid panels, which facilitates the development of a kinematic solution via rigid-plate rotation analysis. As such, the kinetics and stability of folded structures are investigated by assigning suitable torsional spring constants to the fold lines. The results presented demonstrate the effect of fold-pattern geometries on the snapping behavior of the bi-stable origami structure based on the Kresling pattern. The crawling robot is presented as a case study for the use of this origami structure to mimic crawling locomotion.”

Buckling instabilities were utilized to get the robots to achieve a large-stroke snapping motion. Two of the buckling origami towers, placed inside a bellow made out of paper, made up the skeleton of the robot, and the 3D printed end plates connected everything together. The researchers used DC motors to actuate the robots’ movement in quick expansions and contractions; this allowed the robots to inch forward in a “crawling gait,” and also turn in either direction.

The team wrote in the paper, “The ability to produce a functional and geometrically complex 3D mechanical system from a flat sheet introduces exciting opportunities in the field of robotics for remote, autonomously deployable systems or low cost integrated locomotion.”

According to MechSE, the research team’s mathematical analysis could be the very first to make use of virtual folds to analyze panel bending in Kresling origami towers that snap.

“The work presented in this paper leverages the team’s expertise in the design of architectured materials and bio-inspired robotics. We plan to continue to build on our findings to design, model, and test bio-inspired modular robots capable of multiple modes of locomotion,” said Wissa.

The innovative design could also potentially be used in active structures, booms, and manipulations. Discuss in the Origami Robot forum at 3DPB.com.

[Images: MechSE]

 

Share this Article


Recent News

Siemens Energy and DNV Automate Metal 3D Printing Quality Control and Certification

What We Know About the Dental 3D Printing Industry Will Soon Change



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

TPM Launches New 3D Printing Lab in the Heart of the Southeast’s Advanced Manufacturing Hub

On June 1, TPM, a digitization solutions company based in Greenville, South Carolina, opened its new Additive Manufacturing (AM) Lab, also in Greenville. TPM sells hardware, software, and materials for...

3D Printing Webinar & Event Roundup: June 4, 2023

In this week’s roundup, Stratasys has a few stops on its road trip, and TCT 3Sixty is taking place in Birmingham. There are also webinars about automotive 3D printing, electron...

Featured

3D Systems Confirms Bid to Buy Stratasys to Create $1.84B 3D Printing Company

See the update at end of this article. In what has to be one of the 3D printing industry’s biggest news weeks, additive manufacturing (AM) pioneer 3D Systems (NYSE: DDD)...

3D Printing News Unpeeled: Stratasys, Nano Dimension and 3D Systems

Today we’re talking about all the merger options on offer between Desktop Metal, Stratasys, Nano Dimension and 3D Systems. It seems like most people in this industry are publicly saying...