In the recently published ‘FDM 3D printing of conductive polymer nanocomposites: A novel process for functional and smart textiles,’ dissertation student Razieh Hashemi Sanatgar explores digital fabrication with composites for the production of smart textiles. And while composites are used in so many different applications, here, the researchers explain that 3D printing combined with such materials ‘holds strong potential.’ In experimenting with textiles, Sanatgar stresses the importance of both development and characterization of both polymers and nanocomposites.
Sanatgar’s mission is to bring forth ‘textile functionalization processes’ that are flexible and resource efficient, as well as more affordable—and ultimately, smart. These types of textiles are used in a wide range of applications:
- Healthcare
- Interior textiles
- Automobile
- Protective clothing
- Communication and entertainment

Overview of different monomer/polymer materials used with particular layered building techniques in additive manufacturing (SLA: Stereolithography apparatus, DLP: Digital light projection, SLS: Selective laser sintering, SHS: Selective heat sintering, FFF: Fused filament fabrication, FDM: Fused deposition modeling, LOM: Laminated object manufacturing).
The approach is meant to be interdisciplinary and addresses the benefits in relation to issues such as non-renewable materials, energy, and possible alternatives. Sanatgar has the right idea about finding a way to manufacture with a lesser footprint and better outcomes overall.
“Direct 3D printing on textiles can have effect on energy demand in development of functional and smart textiles by simplification of the supply chain,” states Sanatgar. “Supply chain can be improved by functionalization at certain places where needed to the end-user, therefore, the energy consumption will be reduced by shortening the length of the supply chain. Developing new and complex geometrics that would otherwise be problematic, become practical with 3D printing.”
Smart textiles are the classic ‘wave of the future’ medium, able to morph according to their environment, as well as responding to user need. Smart functions are not without challenge though, and especially in:
- Durability
- Reliability
- ScalabilityIndustrialization of the production processes
“PLA deposited on PA fabric does not show high adhesion force since two polymers are not compatible; yet, it confirms our former results regarding the effect of extruder and platform temperature on adhesion force and shows that fabric surface structure as well can be effective,” states the author. “The adhesion force of deposited PLA and PLA nanocomposites on PLA fabrics are completely high which in all samples according to the strength of the deposited layer and fabric, tearing of the fabric or breaking of the deposited layers happened which polar ester groups in both adhesive and adherent with the help of diffusion theory can explain this phenomenon.”
Energy usage is an enormous concern within the textile industry, and here the point is that if technology comes along allowing for a reduction in water, energy, chemicals, and waste, it should be fully developed.
“However, there are lots of challenges to achieve the goal for example the technologies are not ready yet to respond to the needs of industry, and the awareness and education is needed to apply resource-effective processes in textiles. This thesis focused on applying a novel technology for development of functional and smart textiles. The most challenging problem in smart textile market is that the existing technologies cannot respond to the customized needs, therefore the economy and production scale challenges still exist.
“3D printing was applied in this thesis as a flexible technology to enable customized production with less water, chemical and energy for different possible applications such as integrating sensors and interconnections directly on fabric where they are needed, water and solvent-free as well as patterned functionalization processes,” concluded the author.
There is no question that composites are improving 3D printing further as researchers compile data on the merits of polymer composites, copper metal composites, and alternative material composites such as wood. What do you think of this news? Let us know your thoughts; join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

First step of the preparation of the CPC 3D printer filaments: preparation of the pelletized masterbatch
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Rapid Fusion Introduces UK’s First Large Format Hybrid 3D Printer for Polymers
Rapid Fusion is set to unveil what it describes as the first UK-built large format hybrid 3D printer, Medusa, at an open day event on February 26 at its Skypark...
ADDiTEC’s AMDROiD X: A Portable DED Metal 3D Printer for Defense
Given the outsized role of the U.S. Department of Defense (DoD) in the additive manufacturing (AM) industry, the Military AM (MILAM) conference in Tampa, Florida, has become a key trade...
UK’s First Homegrown Rocket Launch Nears Reality with £20M Investment
A UK-built rocket launching into space from British soil could finally happen soon. The UK has been working toward this for over a decade. In 2017, the government ramped up...
Stratasys Secures $120M Investment from Fortissimo Capital Amid Pressure from Bambu Lab
Stratasys Ltd. (NASDAQ: SSYS) has announced a $120 million investment from Fortissimo Capital, an Israeli private equity firm. The deal involves the direct purchase of 11.65 million newly issued shares...