Researchers from Chile and Spain used a variety of samples to study settings for 3D printing samples in ‘Parametric Study of 3D Additive Printing Parameters Using Conductive Filaments on Microwave Topologies.’ While accessibility and affordability has accelerated exponentially for 3D printing users over the past few years, skill in setting parameters—along with limits in lower-level hardware—is an ongoing topic; here though, the research team adds another level of complexity to the equation in 3D printing with conductive filaments.
While there are many previous studies regarding 3D printing with a variety of different techniques, and parameters, conductivity is rarely further explored—with most data centered around dielectric filaments; however, as affordability in materials continues to expand, use of conductive filament merits more study regarding characterization, performance, and settings.
“Depending on the specific software used and the printer, each prototype can be constructed in many different ways in terms of percentage of infill, wall size, and height of the layer and infill pattern,” state the researchers.
Remarking on the few compatible filaments on the market for basic 3D printing, the researchers decided to use 1.75-mm Electrifi conductive filament in this study, offering a resistivity of 0.006 Ω⋅ cm—chosen due to its very high level of conductivity in comparison to the few others available.
Characterization was performed with a microstrip transmission line, using a substrate targeted toward conductive filament printed on a modified Ocular 3D printer. For ultimate optimization, the team customized the hot-end with a CNC machine, aiming toward improved filament flux and preventing any possible damage or clogging.
“Before the characterization of the 3D-printed microstrip lines, a reference 50 Ω microstrip line is made with copper foils over the previously characterized PLA,” stated the researchers. “The dimensions of the printed PLA substrate are 70 mm ×70 mm ×1.7 mm.
“To compare the measurements and to remove the dielectric losses introduced by the substrate, the transmission losses of the copper microstrip line etched on the same PLA substrate was subtracted from the measurements results of the fully 3D microstrip line transmission coefficient.”
Printer settings were established once microstrip line dimensions were outlined, with infill percentages shown in the figure below:
Concentric infill, triangle infill, and zig-zag infill were chosen, and patterns were constructed with layer heights of 0.2 mm, 0.25 mm, and 0.3 mm—meant to offer stability during fabrication. Lower layer heights proved less stable in prior experiments. Overall, the team 3D printed a variety of 27 microstrips.
Two different antennas were built in the end: one microstrip patch and one pyramidal horn. The first was meant to be like a typical manufactured one, while the other was meant to test out both an aperture antenna topology with a waveguide feed as well as a method for assessing the efficacy of a lighter-weight product and its effect on performance. The team tested both antenna in an anechoic chamber.
“The low-weight pyramidal horn antenna showed good agreement in comparison with the simulated antenna, showing lower losses than the microstrip antenna. This can be explained by the fact that the values of currents for waveguide topology tend to be lower than in a resonant topology such as the microstrip patch antenna,” concluded the researchers. “As the low-weight horn antenna has a similar behavior to that of its fully metallic equivalent, it can be very useful for applications where weight is an important issue, such as antennas with critical mechanical movements or antennas on unmanned aerial vehicles (UAV).”
3D printing parameters is a constant source of challenge—and study—for users involved in a wide array of projects from processing parameters and testing cellular structures to optimizing parameters for use with other materials, and investigating typical issues like surface roughness.
What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.
[Source / Images: ‘Parametric Study of 3D Additive Printing Parameters Using Conductive Filaments on Microwave Topologies’]Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
3D Printing News Briefs, November 30, 2024: On-Demand Spare Parts, Shoes, & More
Kicking off today’s 3D Printing News Briefs, Phase3D launched a real-time production control system for AM, and the Royal Netherlands Navy is using Ultimaker 3D printers for on-demand spare parts...
Meet Xell, xolo’s Budget-Friendly Bioprinter for Labs
Building on its expertise in volumetric bioprinting, xolo has unveiled Xell. This compact bioprinter brings rapid fabrication of complex structures without visible layers to research labs at an unprecedented price....
3D Printing Financials: Nano Dimension’s Q3 Success Meets Activist Opposition
With its best third quarter ever, Nano Dimension (Nasdaq: NNDM) proves that smart investments and tighter operations can deliver big results—even in a tough market. The Israeli-based company ended Q3...
Creality Shines at Formnext 2024, Showcasing K2 Plus, New DIY Model and Accessories
Creality proudly participated in Formnext 2024, continuing its tradition of excellence as a long-standing exhibitor at one of the world’s premier trade fairs for additive manufacturing. This year, Creality highlighted...