Shandong University Researchers Working on Optimal Parameters for 3D Printing PEEK

Share this Article

In their recently published paper, ’Experimental study on parameters of 3D printing process for PEEK materials,’ researchers from Shandong University of Technology conduct experiments regarding the use of PEEK 3D printing materials for creating artificial bone. While there have historically been many challenges in bone regeneration techniques, authors H. Liu, X. Cheng, X. H. Yang, G. M. Zheng, and Q. J. Guo realize the need for high performance, strong materials produced with efficiency and as little waste and impact on the environment as possible.

During the course of their research, the authors realized that the optimum parameters for printing with PEEK materials in 3D printing are as follows:

  • Layer thickness of 0.43 mm
  • Density of internal filling at 55.05 percent
  • Outer contour of 1.39

While there are numerous ways to make bone, clearly refinements can be made in the process—with the use of special engineering plastic Polyetheretherketone (PEEK) showing the most promise overall due to its outstanding strength, stability, and best of all—biocompatibility.

Coupled with the opportunities for customization offered by 3D printing, PEEK materials and processes surrounding their use merit further exploration.

In this study, the authors 3D printed a variety of different cubes for experimentation, each with a length of 34 mm, a width of 12 mm, and a height of 3 mm.

“The printing time and the length of the printed material are recorded by the control system, and the amount of printed material is calculated based on the length of the material. The storage modulus is measured by the dynamic thermo mechanical tester DMA-Q800,” explained the authors in their research paper. “Experimental design of the process for optimum 3D printing parameter was conducted according to Response Surface Methodology technique using a Box-Behnken design matrix. With reference to the previous study, the layer thickness called factor A, the density of internal filling called factor B, and the contour called factor C were chosen as the objects of study in terms of printing time, the consumption of printing material, and storage modulus.”

The researchers completed 17 runs, as outlined in Table 2:

For the verification experiment, the researchers used the aforementioned best parameters, resulting in success when compared with the control model. The authors stated that in comparison influence of each output response in comparison to the factors in their research was critical as interactions between said factors was so influential regarding the outcome.

“Verification experiment was carried out and it verified the correctness of the model and optimization results,” concluded the researchers.

3D printing and bioprinting for the regeneration of bone have become a serious focus for researchers around the world, eager not only to make scientific strides, but also to help eliminate pain and suffering for patients with conditions related to bone loss. From continued success using titanium to the use of nanofibers, to magnesium alloys, researchers continue to make impressive progress in the field of medicine.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: ’Experimental study on parameters of 3D printing process for PEEK materials’]

Share this Article


Recent News

Lithophane Makers: 3D Print Your Own Multi-Color Work of Art

Medical Startup axial3D Raises U$S 3 Million To Expand To New Markets



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Awakens Renewed Interest in Polymeric Heart Valves for Patient-Specific Treatment

Authors Charles D. Resor and Deepak L Batte review the recent work of André R. Studart and his co-researchers in creating artificial heart valves via 3D printing. Their findings are...

3D Printing News Briefs: July 19, 2019

We’ve got a new partnership to tell you about in today’s 3D Printing News Briefs, followed by a software update and some news about 3D printing in the hospital. FIT...

Fortify Closes $10M Series A Funding Led by Accel

Fortify, known for their next-generation composites and Digital Composite Technology (DCM), has just completed a $10M Series A funding led by Accel. The Boston-headquartered additive manufacturing startup also received funding...

Researchers Rely on 3D Printed Models & Surgical Guides for Pediatric Orthopedic Surgery

Medical researchers and orthopedic surgeons in Taiwan at Kaohsiung Veterans General Hospital continue to explore better ways to heal bones and manage defects, with their findings outlined in the recently...


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!