In ‘Fabrication and measurement of 3D printed retroflective fibers,’ authors Michael Ghebrebrhan, Gabriel Z. J. Loke, and Yoel Fink are engaged in studying novel materials for additive manufacturing processes. With a new retroreflective fiber, the authors offer a material combination with a previously unheard of complex (non-circular, non-convex) cross-section that also exhibits optical scattering properties. This new kind of fiber is built up layer by layer but can subsequently be used as a fiber would.
As thermal drawing becomes more popular again for creating complex fibers, researchers make use of polymers, metals, elastomers, and more. For this research project, they created a 3D printed preform meant to retroreflect light—or as the authors explain, ‘the angle of reflection is the negative of the angle of incidence.’ The preform is made of polymer and metal (polycarbonate (PC) and indium), with the fiber acting as the element that retroreflects light.
“Glass beads on a reflective surface are a familiar example of a retroreflective surface,” state the researchers. “To maximize retroreflectivity, the polymer’s refractive index should be close to 1.9. At that index, a cylinder or sphere will refract light towards the intersection of the optical axis and back surface.”
The preforms were 3D printed on a Stratasys Fortus 450MC printer, with infill at the highest setting as attempts to increase it otherwise failed; the issue with indium is that it is so much more dense than PC, and the preform must be able to resist deformation.
“Hence a print path that traces multiple concentric paths should be used to counteract the outward hydrostatic pressure from the liquid indium for preserving the cross-section and preventing pooling (lumping) of indium in the draw furnace,” state the researchers.
As the researchers worked to stop pooling of indium, they lowered dwell time and maximum temperature as much as possible. They did, however, find that because the preform is 3D printed, strength was not as high as in comparison to a solid rod. Because of that, its viscosity had to be lower than a solid preform—created with a preform that includes a ‘long solid bottom.’
One part of a fiber with five filled channels was then taken for retroreflection. As light was focused on the fiber, the team recorded intensity with a spectrometer.
“As our figure of merit, we calculate the amount of light retroreflected by a single fiber relative to that of a white reflecting standard. Both are then scaled by the intercepted area. This yields a rescaled relative retroreflection ratio (RRR),” concluded the researchers. “Across the visible spectrum we obtain a rescaled RRR of roughly 260.
“Complex cross-section preforms are easily attainable with additive manufacturing and future efforts will explore the addition of multiple materials.”
The study of materials continues to become more complex in 3D printing, and especially with composites—from continuous fiber to wire polymers, flax biocomposite, and countless others. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.
[Source / Images: ‘Fabrication and measurement of 3D printed retroflective fibers’]Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Printing Money Episode 21: Q2 2024 Earnings Analysis with Troy Jensen, Cantor Fitzgerald
Like sands through the hourglass, so is the Q2 2024 earnings season. All of the publicly traded 3D printing companies have reported their financials, so it is time to welcome...
3D Printing Financials: After Long Silence, 3D Systems Reports Q2 Losses, Sees Recovery Signs
3D Systems (NYSE: DDD) has finally shared its financial details for the second quarter of 2024 after a long delay. The company had been unusually quiet, with no updates on...
Emerging AM Technologies Analysis: Where Are They Now, Part 2
In March 2023, AM Research published the “Emerging AM Technologies Analysis: 10 Companies to Watch” report highlighting 3D printing companies with the potential to disrupt the additive manufacturing (AM) industry....
Oqton Wins over EOS with Quality Control Software Integration
When 3D Systems acquired Oqton, there were concerns about whether other original equipment manufacturers (OEMs) would continue to trust and share information with Oqton. Oqton’s automation and process software can...