Let’s say you go to your annual physical, and the doctor wants you to get a blood sample. No problem, right? It’s easy to take care of here on Earth, but if we end up living among the stars someday in deep space, this might end up being a pretty difficult task to complete. We need to understand how the environment in space can change and affect our health, so luckily, NASA is working on a new project that could get us some answers – and 3D printing will play an important part.
If we can figure out how genes affect disease and aging, and how bacteria will affect the health of astronauts, we’ll be one step closer to safe, long-term missions into outer space. Over the next four years, NASA will work to develop 3D printable designs for tools and instruments on the International Space Station (ISS) that are able to handle liquids, like blood, in microgravity without spilling; this will enable astronauts to analyze important biological samples in space.
The organization will be developing technology that can be used in the fields of microbiology important to human health known as omics – this includes research relating to proteomes, microbiomes, and genomes. NASA’s Jet Propulsion Laboratory (JPL) in California, managed for NASA by Caltech, is leading the important Omics in Space project, which was funded by the Translational Research Institute for Space Health.

NASA Extreme Environment Mission Operations (NEEMO) crew member, Matthias Maurer of ESA, works on inserting samples into the MinION DNA sequencer as part of the Biomolecule Sequencer experiment. [Image: NASA]
As the astronauts on the ISS can’t process biological samples on board, they have to send them down to Earth, which obviously takes some time. In addition, handling fluids in microgravity is no walk in the park for astronauts, who have to collect many samples, like their own blood and saliva, and microbes, carried by both humans and cargo, which accumulate on the ISS walls. Results could be compromised if there’s a lack of proper tools, which could lead to samples floating, forming air bubbles, or spilling – having debris floating around the ISS can be a big problem.
“You don’t have overnight mail when you go to space. You have to do all the analysis by yourself,” explained JPL’s Kasthuri Venkateswaran, the principal investigator for Omics in Space. “This project will develop an automated system for studying molecular biology with minimal crew intervention.”
We’ve seen 3D printed medical supplies in space, but NASA astronauts hit a major milestone when they successfully sequenced DNA in space for the first time last year, using a tiny, handheld sequencing tool, developed by Oxford Nanopore Technologies, called the MinION.
Now, the Omics in Space project will take the next step and develop an automated DNA/RNA extractor, which will prepare samples for a MinION device. The extractor requires a critical cartridge in order to extract nucleic acids from the samples for the MinION sequencing, which Omics in Space is modifying so it can be 3D printed out of plastic.
Camilla Urbaniak, a post-doctoral researcher at JPL and co-investigator on the Omics in Space project, said all of the technology for the project has already been successfully tested on Earth.
“We’re taking what’s on Earth to analyze DNA and consolidating all the steps into an automated system. What’s new is we’re developing a one-stop-shop that can extract and process all of these samples,” Urbaniak explained.

A plastic cartridge design that will be 3D printable as part of Omics in Space. [Image: AI Biosciences]
The Omics in Space project will also study the microbes that accumulate on spacecraft, so they can learn to detect genetic markers that show whether they are helpful or harmful.
This project is crucial to gaining a better understanding of human health in space, so we can help keep our astronauts safe…and one day, maybe even the population of our world as we travel into deep space.
Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.
[Source: NASA]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
Print Services
You May Also Like
Blue Origin & Auburn University Use EOS M290 to Study Copper 3D Printing
Blue Origin, the commercial space company built off of investments from Amazon founder Jeff Bezos, has donated two EOS M290 powder bed fusion (PBF) printers to Auburn University’s National Center...
Strategic Advantage of 3D Printing in a Time of Import Tariffs
The value of 3D printing in mitigating the impact of import tariffs is often underestimated. Now is the time to leverage 3D printing to adapt and profit from the opportunities...
Concept Laser Pioneer Frank Herzog on the Future of 3D Printing Investment
Few figures in additive manufacturing (AM) possess the breadth of experience that Frank Herzog does. As the founder of metal laser powder bed fusion (LPBF) pioneer Concept Laser, Herzog played...
NASCAR’s Legacy Motor Club Turns to BigRep for 3D Printed Rocker Extension Skirts
Legacy Motor Club, the NASCAR team owned by racing legends Jimmie Johnson and Richard Petty, recently had to produce new parts to conform to NASCAR regulations issued in the fall...