AMS 2025

Bioprinting 101 – Part 11, Tissue Engineering and Regenerative Medicine

AM Research Military

Share this Article

Microscopic view of Tissue

I am glad to be running this series thus far. It seems that people are very interested with the subject matter, and I myself have learned even more as well. The series has discussed various technologies within bioprinting. We have also discussed a variety of bioprinting materials. We have barely even scratched the surface on topics we can talk about. In this article we are going to look into tissue engineering and regenerative medicine applications of 3D bioprinting.

Let us first define our terms of interest. Tissue engineering is the use of a combination of cells, engineering and materials methods, and suitable biochemical and physiochemical factors to improve or replace biological tissues. Tissue engineering involves the use of a tissue scaffolds for the formation of new viable tissue for a medical purpose. We have talked about the use of bioprinting scaffolds in order to create tissue layers for organs and other parts of the body. One must understand that as a bioengineer, most of the techniques used to create tissue is based on biomimicry. Biomimicry refers to the design and production of materials, structures, and systems that are modeled on biological entities and processes. We are limited in our scope due to the fact that biology is a complex system and it is difficult to mimic natural and living processes. 3D bioprinting is a tool that expedites biomimicry and allows us to create rapidly with synthetic resources.

What is needed to create a scaffold for tissue engineering purposes

Regenerative medicine and tissue engineering go hand in hand. We are looking to build materials that may have innate regenerative properties within our bodies. This is a process that is essential to living organisms – the ability to repair oneself after damage or trauma. Regenerative medicine is a branch of translational research in tissue engineering and molecular biology which deals with the “process of replacing, engineering or regenerating human cells, tissues or organs to restore or establish normal function”. Extracellular matrix materials are commercially available and are used in reconstructive surgery, treatment of chronic wounds, and some orthopedic surgeries. This is the future of medical care in many ways. Our understanding of the ECM and bioprinting is evolving, and technology is continuously improving. The future of ECM biomaterials in tissue engineering and regenerative medicine applications is promising. Progress in decellularization techniques and optimization of recellularization strategies will improve various aspects of an ECM scaffold and its ability to be regenerative. These traits include biocompatibility, endothelializa­tion, and functional anastomosis into the host vasculature.

Regenerative Medicine and 3D bioprinting

Endothelialization refers to the creation of endothelial tissue. Endothelial tissue refers to the tissue the layer of cells lining the inside of blood and lymph vessels, of the heart, and of some other closed cavities. Anastomosis a cross-connection between adjacent channels, tubes, fibers, or other parts of a network. These are major concerns when it comes to tissue engineering and regenerative medicine due to how we need to understand the need for biomimicry. We have to realize that it takes an absurd amount of precision to even build systems that replicate the inner structure of a vascular tissue layer. Then we have to think about how this will be self healing as well. This does not deter the development of this technology though as more people are intrigued by this subject matter on a daily basis.

3D bioprinting is an amazing step in the right direction, and there are companies, universities, and startups who are trying to be on the cutting edge of this field. The wealth of knowledge being created in this field is immense and frankly would intimidate people who are not aware of how vast the field is.

Now I believe the way for us to really delve deep within this series from now on is to start interviewing the leaders within this field. Due diligence will be done for the public to get more in depth understanding from industry experts. It is important to interview a variety of people within this field as no one necessarily is a specialist in this field. There seems to be a lot of cross pollination and multi skilled individuals.  It makes for a wide variety of knowledge to be learned within the field of biology, synthetic biology, biomimicry, biophysics, chemistry, biochemistry, biomaterials, material science, biomedical fields, and a bunch of other fields I have not had a chance to mention. I personally believe that the revolution of bioprinting is a bit early. There is just so much development from different places. It is difficult to see the best methods at the moment. I will try to interview others to gain more insight and build a repertoire of knowledge for all readers.

This article is part of a series that wishes to make bioprinting more accessible. It starts with bioprinting 101, Hydrogels, 3D Industrial Bioprinters, Alginate, Bioinks, Pluronics, Applications, Gelatin, and Decellularized Extracellular Matrices.

Share this Article


Recent News

Flexibility Is the Bottom Line: Touring the Visitech Americas DLP Light Engine Factory

3D Systems Sells Geomagic Software Division to Hexagon AB



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Webinar and Event Roundup: December 8, 2024

This week, we’ve got a number of webinars, on topics from 3D printing software and medical applications to printed electronics, PVC for industrial 3D printing, and more. There are also...

Featured

Printing Money Episode 24: Q3 2024 Earnings Review with Troy Jensen, Cantor Fitzgerald

Welcome to Printing Money Episode 24. Troy Jensen, Managing Director of Cantor Fitzgerald, joins Danny Piper, Managing Partner at NewCap Partners, once again as it is time to review the...

3D Printing Financials: 3D Systems Faces Challenges, Bets on Innovation

3D Systems (NYSE: DDD) closed its third quarter of 2024 with mixed results, navigating macroeconomic pressures while leaning on innovation to shape its future. The company reported a challenging sales...

3D Printing Webinar and Event Roundup: December 1, 2024

We’ve got several webinars this first week of December, plus events all around the world, from Chicago, Los Angeles, and Austin, Texas to the UK, Barcelona and beyond. Plus, there...