3D Printed Electrodes Make Microfluidic Devices Cheaper and Quicker to Fabricate

RAPID

Share this Article

Researchers at Imperial College London wanted to develop a microfluidic biosensor for analysis of cancer cells that was quicker and easier to produce. A microfluidic device involves biological material traveling through tiny channels and electrodes passing electrical current through the material so that a microchip can analyze what the material contains. The Imperial College London scientists focused on the electrode in improving their device – by 3D printing the electrode, they could save a lot of time and money, they discovered.

Dr. Ali Salehi-Reyhani

“We had an idea about how we could pattern these electrodes in a simple manner,” said Imperial College London chemistry department lead researcher Dr. Ali Salehi-Reyhani. “And it is using the patterns of microfluidic channels to pattern that down onto a surface, so you can get these complicated designs that would otherwise be extremely difficult to make.”

The electrode sits between the channels of the microfluidic device, and the biological material flows over it. Dr. Salehi-Reyhani and his team realized that they could design an electrode on a computer and 3D print it.

“We draw something on the PC [personal computer], five minutes later you have your template and half an hour after that you have your got electrodes,” said Dr. Salehi-Reyhani.

They had a little fun with the technology while testing it out, as well.

“We like IronMan so we did a Google image search and loaded it into Photoshop and printed it out,” Dr. Salehi-Reyhani continued.

Conventional labs on a chip use gold electrodes, and while the 3D printed material was not as conductive as gold, it was still conductive enough to get the job done, especially after some improvements made by the researchers.

“All you need was to send an alternating current, alternating voltage to disrupt the cells,” said Dr. Salehi-Reyhani.

Dr. Salehi-Reyhani hopes that the 3D printing of things like electrodes will democratize the creation of highly specialized scientific equipment like microfluidic devices. He believes that the scientific community can benefit from the input of the maker and hacker community, with its inclination towards coming up with cheaper and quicker ways to create things, even for fields like science and health care.

“With our method researchers and startups can more easily design and develop analytical devices, even when they need electronics that can’t be bought off-the-shelf,” he said. “Community hackspaces are great for democratising science, allowing more people to try out new technology solutions. We hope this method will allow bioelectronics to benefit from that ecosystem of hackers getting hands-on with problems and solutions in healthcare.”

The researchers had to make sure that the 3D printed electrode material was compatible with the biomolecules for the bioassay analysis, and they also needed to ensure that the electrode would stick to the substrate upon which the lab on a chip sits. The next step is to produce a microfluidic biosensor that can undergo clinical trials in medical centers for use by non-experts. The biosensor could detect the difference between viral and bacterial infections with just a drop of a patient’s blood. Dr. Salehi-Reyhani also wants to look into developing wearable biosensor applications like sweat analysis.

The research is documented in a paper entitled “Micropatterning of planar metal electrodes by vacuum filling microfluidic channel geometries.” Authors of the paper include Stelios Chatzimichail, Pashini Supramanian, Oscar Ces and Ali Salehi-Reyhani.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

Share this Article


Recent News

AM Data Slice: 3D Printing Materials to Reach $3.9B in 2024

3D Printing Unpeeled: Biofuel Waste to Filament & Sustainable Photopolymers



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

NSF Awards Kentucky $1M for Advanced Manufacturing

The National Science Foundation has awarded a $1 million grant to the University of Louisville for the Advancing Manufacturing and Building Construction Technologies (NSF AMT) project. This initiative is part...

3D Printing News Briefs, May 11, 2024: 3D Printed Stent, Tower, Sculptures, & More

We’re starting off with medical research in today’s 3D Printing News Briefs, as researchers in Korea used CT images and 3D printing to fabricate an educational simulator for a mastoidectomy....

3D Printing Unpeeled: Wind Turbines, Probiotics and Lenses

TPI Composites, ORNL and Ingersoll Rand are working to make wind turbine tooling segments that can be 18.3 meters long. These elements also include resistive wires that help keep the...

Tethon 3D Releases Cost-effective Bioprinter

Tethon 3D, known for its ceramic-loaded DLP materials, custom resins, and DLP 3D printers, has recently released a bioprinter. Vat polymerization printers like DLP systems have been widely used by...