Boeing and Oerlikon Team Up to Develop Standard Processes for 3D Printed Titanium Aerospace Parts

Share this Article

[Image: Norsk Titanium]

While titanium is often the metal of choice when it comes to 3D printed implants, the strong, lightweight material also sees great use in manufacturing aircraft components. The aerospace industry is rapidly increasing its rate of adoption for 3D printing technology – so much so that the US Federal Aviation Administration (FAA) is currently working to develop a comprehensive plan on how to deal with this increased rate, as it opens up regulatory challenges in both the military and the commercial aerospace sectors.

Last year, Boeing, the world’s largest aerospace company and no stranger to 3D printing, officially debuted the first 3D printed structural titanium components that were approved by the FAA for use in a commercial airplane, its 787 Dreamliner. The company even created a special Additive Manufacturing organization last year, which uses 3D printing to enable greater affordability, customization, quality, and speed-to-market innovation, so its customers can generate more value.

[Image: Boeing]

Now the company, which currently has about 50,000 3D printed parts flying on commercial, defense, and space programs, has signed a five-year collaboration agreement with Swiss technology and engineering group Oerlikon in order to develop standard processes and materials for metal 3D printing.

“This program will drive the faster adoption of additive manufacturing in the rapidly growing aerospace, space and defence markets. Working together with Boeing will define the path in producing airworthy additive manufacturing components for serial manufacturing,” said Dr. Roland Fischer, CEO of the Oerlikon Group. “We see collaboration as a key enabler to unlocking the value that additive manufacturing can bring to aircraft platforms and look forward to partnering with Boeing.”

Oerlikon, which invested CHF 94 million in R&D in 2016, is one of the leading AM service providers, and offers a range of integrated services, from metal powder production and component design to manufacturing, post-processing, and quality inspection. The Swiss company has been sharpening its focus on 3D printing technology over the last couple of years, with expanded facilities and efforts with multiple partners to advance industrialization of AM.

Oerlikon powders are used by GE and other companies.

Just a few months ago, Oerlikon agreed to collaborate with disruptive rocket propulsion startup LENA Space on developing 3D printed components for propulsion systems used in small launch vehicles that send payloads into low Earth orbit. But now, it’s coming back down to Earth to create standard processes for 3D printed structural titanium aerospace parts with Boeing, so that all kinds of aircraft can enjoy the many benefits offered by additive manufacturing.

“This agreement is an important step toward fully unlocking the value of powder bed titanium additive manufacturing for the aerospace industry. Boeing and Oerlikon will work together to standardize additive manufacturing operations from powder management to finished product and thus enable the development of a wide range of safe, reliable and cost-effective structural titanium aerospace components,” said Leo Christodoulou, Boeing Chief Technologist.

Oerlikon and Boeing will use the data from their five-year collaboration agreement to support the creation of standard titanium 3D printing processes, as well as the qualification of AM suppliers that will produce metallic components through several materials and machines.

The collaboration between the two companies will help aerospace and defense companies, according to an Oerlikon press release, “meet the current challenges to qualify materials and processes for aerospace,” along with developing a qualified supply chain so companies that choose to adopt the technology can achieve cost and quality targets.

The research will first focus on industrializing titanium powder bed fusion, as well as making sure that any parts made with the process will meet flight requirements of the FAA and the Department of Defense.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

Share this Article


Recent News

Medical Startup axial3D Raises U$S 3 Million To Expand To New Markets

Carnegie Mellon: Optimizing Soft Materials 3D Printing With Machine Learning



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

4D Printing in China: Shape Memory Polymers and Continuous Carbon Fiber

Researchers have been looking further into the benefits of shape memory polymers (SMPs) with the addition of raw materials in the form of continuous carbon fiber (CCF). Authors Xinxin Shen,...

3D Printed Wireless Biosystems for Monitoring Cerebral Aneurysms in Real Time

Continuing to further the progress between 3D printing and electronics within the medical field, authors Robert Herbert, Saswat Mishra, Hyo-Ryoung Lim, Hyoungsuk Yoo, and Woon-Hong Yeo explore a new method...

Feasibility Models to Determine Efficacy of 3D Printing Over Traditional Methods

In ‘Model for Evaluating Additive Manufacturing Feasibility in End-Use Production,’ authors Matt Ahtiluoto, Asko Uolevi Ellman, and Eric Coatenea encourage the idea of exploring 3D printing for designs first, comparing...

Refining Macro and Microscopic Topology Optimization for AM Processes

Researchers from Italy and Germany continue along the path so many are following in refining and perfecting 3D printing processes. In the recently published ‘Structural multiscale topology optimization with stress...


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!