RAPID

Fabricating Better Magnets with Cold Spray Additive Manufacturing

Eplus 3D

Share this Article

Lamarre and Bernier

The high-performance magnets used in electric motors are typically made through processes like powder compaction, for sintered magnets, or injection molding for bonded magnets. These processes require multiple steps – the magnets need to first be fabricated and then shaped and assembled into a final product. But a pair of Canadian researchers have come up with a better way that combines all of those steps into one.

Fabrice Bernier and Jean-Michel Lamarre of the National Research Council (NRC) of Canada have developed a new process for fabricating magnets for electric motors. It’s called cold spray additive manufacturing, which involves a material in fine powder form being accelerated in a high-velocity compressed gas jet. A stream of powder hits the substrate at great speed and begins building up a layer at a time, creating complex shapes thanks to industrial robot control. Compared to other additive manufacturing technologies, cold spray additive manufacturing has extremely high buildup rates, allowing for the production of several kilograms of magnets per hour.

The magnets created using cold spray additive manufacturing have excellent mechanical and thermal properties – far superior to those of conventional magnets. The high velocities at which the material is deposited and the absence of polymer in the material matrix result in better mechanical properties, and the adhesion of the magnet to the part is also excellent, requiring neither glue nor assembly. Magnets created using cold spray additive manufacturing are also easy to machine compared to sintered magnets, which are more brittle.

In addition, magnets created with cold spray additive manufacturing technology have increased thermal conductivity, which allows for better temperature control. They’re also corrosion- and oxidation-resistant, meaning that they will have longer lifespans.

Prototypes using this new magnetic material have been tested successfully, and the NRC is looking into ways to use cold spray additive manufacturing to enhance motor designs. They are also working on the development of soft magnetic materials.

“This technology will allow the creation of more compact, better performing motors for the future and could pave the way for building entire motors using cold spray technology, offering significant advantages such as cost reduction, better thermal management and more complex geometries and functionalities,” said Bernier.

The NRC’s focus has been on electric motors, as technology urgently needs to be developed that can reduce carbon dioxide emissions from vehicles. However, this new method of fabricating magnets could lend itself to multiple other applications as well, such as magnetic cooling, wind turbines and telecommunications devices.

Other organizations have been working with cold spray technology as a form of additive manufacturing as well. Cold spray has been used for a long time to repair metal parts, but as it turns out, it works quite well as a means for fabricating new parts, too. Additive manufacturing is also increasingly coming into play for the development of superior permanent magnets.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

[Images: NRC]

 

 

Share this Article


Recent News

3D Printing News Unpeeled: Metal 3D Printing Pen, Shell Wall 3D Printing

Medical Goes Additive: How Social Networks Are Humanizing the 3D Printing Industry



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Webinar & Event Roundup: March 26, 2023

Get ready for a busy week that’s chock full of webinars and events, both virtual and in-person, all around the world. Let’s not waste time, read on for all the...

3D Printing Industry Worth $13.5B, Will Reach $25B by 2025

According to its latest market data, SmarTech Analysis estimates that the 3D printing industry grew at a rapid pace of about 23% in 2022, reaching $13.5 billion. This number specifically...

Amgen’s Bioprinted Tonsil Organoids Aid in Drug Research

Biotechnology giant Amgen (NASDAQ: AMGN) is using bioprinting to simulate the immune system to aid drug development. The company’s research looks for immune responses from compounds being evaluated for use...

CORE Industrial Partners’ 3D Printing Buying Spree Continues with New Acquisition

CORE Industrial Partners completes its eleventh 3D printing firm acquisition in less than five years. Headquartered in Chicago, this private equity firm continues to focus on acquiring manufacturing, industrial technology,...