Exone end to end binder jetting service

ORNL Researchers 3D Print Permanent Magnets for Clean Energy Applications, Saving Time, Cost and Material

Metal Parts Produced
Commercial Space
Medical Devices

Share this Article

ornl-logo249x60At this point, it’s no longer a surprise to hear that 3D printing something results in better performance, strength, etc. compared to traditionally manufactured equivalents. The fact that it’s no longer a surprise, however, doesn’t make it any less exciting – especially when the product or component in question is something that has never been 3D printed before. Last month, a group of researchers from Technische Universität Wien (TU Wien) revealed that they had used 3D printing to create strong permanent magnets, offering the potential for the design and production of magnets with complex customized shapes and fields. The discovery opened up new possibilities for the design of advanced sensing systems.

3dprintedmagnet_image1

Now, researchers at Oak Ridge National Laboratory have released their own study discussing how 3D printed magnets can outperform permanent magnets created by traditional means, while also conserving rare materials. In a paper entitled “Big Area Additive Manufacturing of High Performance Bonded NdFeB Magnets,” the research group documents how they used the Big Area Additive Manufacturing Machine (BAAM) to 3D print isotropic, near-net-shape, neodymium-iron-boron (NdFeB) bonded magnets.

The team used composite pellets, manufactured by Magnet Applications Inc., composed of 65% isotropic NdFeB powder and 35% polyamide, or Nylon 12. They experimented with printing the material both with a binder jetting machine and with the BAAM, but it was the BAAM that, unsurprisingly, delivered the most dramatic results, with its ability to print at almost 200 times faster than other additive manufacturing technologies with no size or shape limitations. The resulting magnets had comparable or even better magnetic, microstructural and mechanical properties than bonded magnets produced with the same composition via injection molding.

srep36212-f1

The research was funded by the Department of Energy’s Critical Materials Institute with the goal of developing powerful magnets for use in clean energy technologies such as windmills, generators, motors and electric vehicles. NdFeB magnets are the most powerful magnets in existence, and 3D printing them, the research team discovered, not only allowed for complex shapes and large sizes but produced much less material waste. According to Parans Paranthaman, principal investigator and a group leader in ORNL’s Chemical Sciences Division, conventional magnet manufacturing can result in 30% to 50% material waste, while additive manufacturing results in nearly zero, thanks to its ability to capture and reuse materials.

3dprintedmagnet_image2In addition, the cost of manufacturing magnets is greatly reduced compared to traditional injection molding, said Ling Li, a co-author on the study. A customer may easily require 50 different magnet designs for a project, and instead of having to create a separate mold and tooling for each one, they can be quickly and easily 3D printed for much less expense.

“The ability to print high-strength magnets in complex shapes is a game changer for the design of efficient electric motors and generators,” said Alex King, Director of the Critical Materials Institute. “It removes many of the restrictions imposed by today’s manufacturing methods.”

In the future, the researchers plan to experiment with the 3D printing of anisotropic, or directional, bonded magnets, which are stronger than isotropic magnets and have no specified magnetization direction. They will also study the effects that different binder types, the loading fraction of magnetic powder, and processing temperatures have on the mechanical and magnetic properties of the printed magnets.

“This work has demonstrated the potential of additive manufacturing to be applied to the fabrication of a wide range of magnetic materials and assemblies,” said study co-author John Ormerod of Magnet Applications. “Magnet Applications and many of our customers are excited to explore the commercial impact of this technology in the near future.”

Additional contributors to the study include Angelica Tirado, Orlando Rios, Brian Post, Vlastimil Kunc, R.R. Lowden, Edgar Lara-Curzio, I.C. Nlebedim, Thomas Lograsso and Robert Fredette. You can access the full study here. Discuss in the 3D Printed Magnets forum at 3DPB.com.

[Source: ORNL]

 

Share this Article


Recent News

Expansion Strategy: 3D Printing Digital Imaging Company In-Vision is Now a Stock Corporation

FX20 Printer & Continuous Fiber Reinforced ULTEM 9085 Increase 3D Printing in Demanding Industries



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Webinar and Event Roundup: October 24, 2021

It’s another busy week of events and roundups, covering topics from dispensing and medical applications to AM risk assessment, software, and much more. Read on for all the details! ViscoTec’s...

2021 Formnext Start-Up Challenge & AM Ventures Impact Award Winners Announced

While the physical event was canceled last year due to the COVID-19 pandemic, Formnext is back live and in-person this year, November16-19, albeit with some very specific rules for attendance....

Hexagon & Stratasys Announce Partnership to Integrate Digimat Software with ULTEM 9805

One of the world’s most prominent intelligent manufacturing software firms, Hexagon Manufacturing Intelligence, has announced a new partnership with Stratasys, an industry leader in producing 3D printers and solutions for...

RAPID + TCT 2021 Day 2: 3D Printing with Inkbit, Farsoon, AON3D, & Raise3D

At the recent RAPID + TCT 2021 in Chicago, I had the opportunity to attend keynote presentations, interview several industry companies, watch an awards ceremony, and walk the show floor....


Shop

View our broad assortment of in house and third party products.