AMR

Advanced 3D Printing Materials: Oxford Performance Materials Commercializes Proprietary OXPEKK Custom Compounds

Share this Article

As additive manufacturing, otherwise known as 3D printing, begins to find more applications, there becomes an apparent need for higher-performance materials. Oxford Performance Materials Inc. (OPM), based out of South Windsor, Connecticut, has officially announced a commercial launch of their high-performance material family — OXPEKK.

“OXPEKK is a special breed of polymer with a desirable combination of processing and performance attributes that address some of the most demanding applications in today’s industrial markets,” stated OPM CTO Tony DeCarmine.

OXPEKK has a glass transition temperature (Tg) of 162°C and maintains a high level of chemical resistance as well as mechanical load bearing strength. OXPEKK products are composed of OPM’s propriety blend of poly-ether-ketone-ketone (PEKK) formulations. PEKK is a semi-crystalline thermoplastic, with high heat resistance, chemical resistance, and the ability to withstand high mechanical loads.

OPM has been working with this product for some time ahead of its commercial launch. Earlier this year, Boeing announced they would be partnering with OPM to build 3D printed components for their “space taxi” program. In addition, Hexcel, an advanced composites technology company, has also previously made a strategic investment in OPM to further material development in the realm of additive and aerospace.

Product Development Engineer Jigar Patel works with a CAD image of a thrust reverser cascade in development at Oxford Performance Materials Inc., the maker of more than 600 parts to be used on Boeing’s new Starliner manned spacecraft, in South Windsor, Connecticut, U.S., January 31, 2017. [Image: Reuters]

In aerospace, weight reduction matters. Larry Varholak, President of Oxford’s aerospace business, said in an interview: “What really makes it valuable to NASA and Boeing is this material is as strong as aluminum at significantly less weight.” Reducing fuel consumption and increasing efficiency of flight have always been challenges in the aerospace industry. Aerospace engineers jump at any opportunity to reduce weight without sacrificing performance. This is exactly what the family of OXPEKK materials allow these engineers to accomplish.  Even a few pounds of weight reduction can mean significant savings over the life of an aerospace vehicle.

OPM printed Aircraft fitting – Before and After part optimization.

OPM is also finding applications not just in aerospace, but in the biomedical sector as well. OXPEKK’s high chemical resistance as well as gamma stability make it a prime material for use in many Biomedical applications.  OPM has already proven a biomedical application as they gained FDA approval a few years ago, utilizing their proprietary OXPEKK material to create spinal implants.

By commercializing their proprietary PEKK formulation, OPM hopes to capitalize on their own in-house experience in creating high-value parts for the aerospace and biomedical industries. OPM operates and designs all its manufacturing facilities to meet the following standards:

  • ISO 13485 certification for medical applications with a QMS intended to address applicable Medical Device Directives (MDD), regulations and responsibilities, demonstrating a commitment to the safety and quality of the medical devices manufactured by OPM customers.

    OPM simplified process flow for producing 3D printed implants

  • AS9100C certification for aerospace & industrial applications when OXPEKK Custom Compounds are subject to elevated risk management standards in those markets.

“We are very excited to be launching OXPEKK Custom Compounds, which offer a unique combination of properties that users of high performance polymers will find compelling,” DeCarmine said of this week’s announcement.

OPM has so far proven to be a leader in the additive materials world. While growth isn’t expected to slow anytime soon in the additive materials world, OPM is positioning itself well to be a leader in high-performance materials.

Discuss in the OXPEKK Commercialization forum thread at 3DPB.com.

Share this Article


Recent News

Kings 3D Breaks Ground on $70M 3D Printing Hub in China

An Intertwined Future: 3D Printing Nanocellulose



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Regular, Medium, and Large Format 3D Printing Explained

At Additive Manufacturing (AM) Research and on 3DPrint.com, we use the terms regular, medium, and large format to segment the 3D printing market. We developed these terms to help bring...

Global Materials Group Acquires Canadian Hardfacing Metal Firm, Boosting 3D Printing Portfolio

Consolidation in the additive manufacturing (AM) service bureau segment continues to take place. The latest news sees international provider Wall Colmonoy acquire Indurate Alloys Ltd., a Canadian supplier of hardfacing...

Featured

Beyond Chuck Hull’s Legacy: the Unsung Heroes Who Paved the Way for 3D Printing

Next month, we will celebrate a huge anniversary. 40 years ago, on August 8, 1984, Charles Hull filed a patent application for stereolithography: the first additive manufacturing technique in history,...

3DPOD Episode 207: 3D Printed Electronics with Richard Neill, CEO of Advanced Printed Electronic Solutions

Rich Neill is refreshingly clear and direct about 3D printed electronics. His previous venture allowed him to start Advanced Printed Electronic Solutions with his own money, making him beholden to...