Advanced 3D Printing Materials: Oxford Performance Materials Commercializes Proprietary OXPEKK Custom Compounds
As additive manufacturing, otherwise known as 3D printing, begins to find more applications, there becomes an apparent need for higher-performance materials. Oxford Performance Materials Inc. (OPM), based out of South Windsor, Connecticut, has officially announced a commercial launch of their high-performance material family — OXPEKK.
“OXPEKK is a special breed of polymer with a desirable combination of processing and performance attributes that address some of the most demanding applications in today’s industrial markets,” stated OPM CTO Tony DeCarmine.
OXPEKK has a glass transition temperature (Tg) of 162°C and maintains a high level of chemical resistance as well as mechanical load bearing strength. OXPEKK products are composed of OPM’s propriety blend of poly-ether-ketone-ketone (PEKK) formulations. PEKK is a semi-crystalline thermoplastic, with high heat resistance, chemical resistance, and the ability to withstand high mechanical loads.
OPM has been working with this product for some time ahead of its commercial launch. Earlier this year, Boeing announced they would be partnering with OPM to build 3D printed components for their “space taxi” program. In addition, Hexcel, an advanced composites technology company, has also previously made a strategic investment in OPM to further material development in the realm of additive and aerospace.
In aerospace, weight reduction matters. Larry Varholak, President of Oxford’s aerospace business, said in an interview: “What really makes it valuable to NASA and Boeing is this material is as strong as aluminum at significantly less weight.” Reducing fuel consumption and increasing efficiency of flight have always been challenges in the aerospace industry. Aerospace engineers jump at any opportunity to reduce weight without sacrificing performance. This is exactly what the family of OXPEKK materials allow these engineers to accomplish. Even a few pounds of weight reduction can mean significant savings over the life of an aerospace vehicle.OPM is also finding applications not just in aerospace, but in the biomedical sector as well. OXPEKK’s high chemical resistance as well as gamma stability make it a prime material for use in many Biomedical applications. OPM has already proven a biomedical application as they gained FDA approval a few years ago, utilizing their proprietary OXPEKK material to create spinal implants.
By commercializing their proprietary PEKK formulation, OPM hopes to capitalize on their own in-house experience in creating high-value parts for the aerospace and biomedical industries. OPM operates and designs all its manufacturing facilities to meet the following standards:
- ISO 13485 certification for medical applications with a QMS intended to address applicable Medical Device Directives (MDD), regulations and responsibilities, demonstrating a commitment to the safety and quality of the medical devices manufactured by OPM customers.
- AS9100C certification for aerospace & industrial applications when OXPEKK Custom Compounds are subject to elevated risk management standards in those markets.
“We are very excited to be launching OXPEKK Custom Compounds, which offer a unique combination of properties that users of high performance polymers will find compelling,” DeCarmine said of this week’s announcement.
OPM has so far proven to be a leader in the additive materials world. While growth isn’t expected to slow anytime soon in the additive materials world, OPM is positioning itself well to be a leader in high-performance materials.
Discuss in the OXPEKK Commercialization forum thread at 3DPB.com.
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Printing Money Episode 23: Additive Manufacturing Deal Analysis with Alex Kingsbury
Episode 23 is here, and it’s chock-full. Alex Kingsbury, nLIGHT Market Development Manager and, not to mention, co-creator of the Printing Money podcast, re-joins Danny and the result is 60...
5 Stages to True Scale: Make Your Own Fleet of Metal 3D Printers
The additive manufacturing (AM) industry is now approaching true scale, where manufacturing is happening at volume. Critical parts, including millions of implants and thousands of rocket propulsion units, are being...
AML3D and Blue Forge Alliance Enter Manufacturing License Agreement for 3D Printed US Navy Parts
AML3D, the Australian original equipment manufacturer (OEM) of the ARCEMY wire arc additive manufacturing (WAAM) system, has announced a Manufacturing License Agreement (MLA) with Blue Forge Alliance (BFA), a neutral...
Accelerating the Domestic Industrial Base: ATDM Director Holley on Workforce Development for Advanced Manufacturing
At this point, it’s a familiar story: the US faces a critical lack of manufacturing workers in the next decade. Estimates are that, by 2032, the nation’s manufacturing labor pool...