Additive Manufacturing Strategies

Empa Researchers Develop Eco-Friendly Cellulose 3D Printing Ink

ST Medical Devices

Share this Article

Cellulose is the main building block of plant material, and it may become the main building block of many 3D printed items, as well. The all-natural, eco-friendly, abundant material has been of interest to many scientists studying 3D printing, and the latest research comes from Empa of Switzerland. Researchers Dr. Gilberto Siqueira and Dr. Tanja Zimmermann from the Laboratory for Applied Wood Materials have been working with colleagues from Harvard University and ETH Zurich to develop an environmentally friendly ink for direct ink writing methods of 3D printing, made from cellulose nanocrystals.

The cellulose biopolymer consists of glucose chains organized in long, fibrous structures. In certain places, the cellulose fibrils show a more ordered structure.

“The places with a higher degree of order appear in a more crystalline form. And it is these sections, which we can purify with acid, that we require for our research,” said Siqueira.

The result is cellulose nanocrystals, or tiny rod-like structures that are 120 nanometers long and have a diameter of 6.5 nanometers. Those crystals are what the researchers used to create a new, more environmentally friendly 3D printing ink; although cellulose inks have been created before, previous inks have been made up of a maximum of 2.5 percent cellulose nanocrystals, or CNC. The Empa team’s ink is composed of 20 percent CNC.

“The biggest challenge was in attaining a viscous elastic consistency that could also be squeezed through the 3D printer nozzles,” said Siqueira.

The first formulations the researchers tried were water-based, but they produced a very brittle material, so they tried a new polymer-based formula. Once it was 3D printed and cured with UV light, the CNC cross-linked with polymer building blocks, which gave the material a higher level of mechanical rigidity. It wasn’t easy to get to that point, though.

“Most polymers are water-repellent or hydrophobic, whereas cellulose attracts water — it is hydrophilic,” Siqueira explained. “As a result they are not very compatible.”

Therefore, the researchers had to chemically modify the cellulose nanocrystals. Then something interesting happened. After conducting X-ray analysis of the 3D printed nanostructures, the researchers discovered that the CNC had aligned itself almost perfectly in the direction it had been printed it. The mechanical strength used to extrude the material through the nozzle had pushed them into the right direction.

“It is pretty interesting that one can so easily control the direction of the nanocrystals, for example, if you want to print something that should have a specific mechanical rigidity in a certain direction,” said Siqueira.

The mechanical properties of the material, in addition to its natural base, make it highly appealing for a number of applications. The cellulose crystals, which can be obtained from numerous different sources including plants and bacteria, differ from each other morphologically and in size, but not in their properties, so they’re an abundant resource. The automobile and packaging industries could benefit from using the material, which is versatile and can be chemically modified if necessary during the 3D printing process. In Siqueira’s opinion, however, the most important applications are biomedical ones such as implants or prostheses.

Jawbone 3D printed with cellulose ink

Empa is further investigating the potential applications of cellulose 3D printing ink, as well as other biologically-based inks. The researchers are using a 3D-Bioplotter system from EnvisionTEC in their work on this front.

“Research in this field is only just beginning,” said Siqueira. “Printing with biopolymers is currently a very hot topic.”

Discuss in the Empa forum at 3DPB.com.

[Source/Images: Empa]

 

Share this Article


Recent News

3D Printing Webinar and Event Roundup: January 16, 2022

3D Printing News Briefs, January 15, 2022: 3D Laser Printing, Housing, & More



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

Max the Macaw is Back in Business with 3D Printed Titanium Beak

Birds use their beaks for a number of reasons, from grooming and eating to climbing and fighting. Max, a handsome 20-year-old macaw now living in the Hyacinth Haven Bird Sanctuary...

3D Printed Vaginal Rings Could Treat Bacterial Infections

There are plenty of examples in which 3D printing has been used to develop drug delivery systems, but this research out of Hungary is tackling the issue from a new...

3D Printing News Briefs, January 12, 2022: Rebranding, Bioprinting, & More

First up in today’s 3D Printing News Briefs, Particle3D has gone through a rebrand, and a team of researchers developed a way to 3D print and preserve tissues in below-freezing...

“California-based Rocket Company” Orders Two of SLM’s 12-Laser Metal 3D Printers

When the equipment you make costs millions of dollars, every sale is newsworthy. When that equipment is meant to revolutionize metal 3D printing and, therefore, manufacturing as a whole, it...


Shop

View our broad assortment of in house and third party products.