MIT Researchers Create New Cellulose 3D Printing Process and Print Antimicrobial Surgical Tool

Share this Article

download-10New 3D printing materials are constantly being developed, as scientists strive to come up with material that’s stronger, more versatile, more sustainable, etc. Materials development isn’t a simple process, but it helps when you’re working with a resource that’s as readily attainable as cellulose – the “most abundant organic polymer in the world,” says MIT postdoc Sebastian Pattinson.

Pattinson, along with associate professor of mechanical engineering and MIT Mechanosynthesis Group head A. John Hart, recently published a National Science Foundation-supported study entitled “Additive Manufacturing of Cellulosic Materials With Robust Mechanics and Antimicrobial Functionality,” which you can access here. Cellulose, the main component of plant cell walls, is everywhere, in the natural world and in the plant-based materials that we use every day: paper, wood, cotton, etc. If it’s not petroleum-based, i.e. plastic or polyester, it’s likely cellulose-based (or metal), and what Pattinson and Hart are trying to do is to replace the non-renewable plastics so commonly used in 3D printing with the much more environmentally friendly cellulose.

“[Cellulose is] the most important component in giving wood its mechanical properties,” explains Pattinson. “And because it’s so inexpensive, it’s biorenewable, biodegradable, and also very chemically versatile, it’s used in a lot of products. Cellulose and its derivatives are used in pharmaceuticals, medical devices, as food additives, building materials, clothing — all sorts of different areas. And a lot of these kinds of products would benefit from the kind of customization that additive manufacturing enables.”

mit-3d-cellulose-1_0

This image from a scanning electron microscope shows a cross section of an object printed using cellulose. The inset shows the surface of the object.

Pattinson and Hart aren’t the first to think so – several other institutions have been conducting serious research into cellulose as a 3D printing material – it’s even been tossed around as a possible component of 3D printed food in the future. It’s a challenging material to print, though. When heated, cellulose thermally decomposes, partly due to the hydrogen bonds between the cellulose molecules, which also make for a viscous, difficult to extrude material.

admt201600084-gra-0001Cellulose acetate is a different matter. To create this already commonly-used material, pure cellulose is combined with acetic anhydride, which reduces the number of hydrogen bonds. Cellulose acetate can be dissolved in acetone and extruded through a nozzle; once the acetone evaporates, the cellulose acetate solidifies into a strong plastic alternative. The solidified cellulose acetate can then be further treated for an even stronger material, as Pattinson and Hart did.

“After we 3-D print, we restore the hydrogen bonding network through a sodium hydroxide treatment,” Pattinson says. “We find that the strength and toughness of the parts we get…are greater than many commonly used materials.”

That’s not the coolest part, though. Pattinson and Hart further experimented by adding an antimicrobial dye to the cellulose acetate and 3D printing a pair of surgical tweezers. When fluorescent light was shined on the tweezers, the antimicrobial properties activated and killed bacteria.

mit-3d-cellulose-2

“[Tools like this] could be useful for remote medical settings where there’s a need for surgical tools but it’s difficult to deliver new tools as they break, or where there’s a need for customized tools,” says Pattinson. “And with the antimicrobial properties, if the sterility of the operating room is not ideal the antimicrobial function could be essential.”

Cellulose acetate could potentially be faster to print than polymer materials, he continues, as it’s a room-temperature process that only requires evaporation to solidify the material. It could even be further accelerated by blowing hot air over it to speed the evaporation process, for example. It’s also much less expensive than the polymer materials most commonly used for 3D printing, and it’s already widely available for other purposes. These factors, along with the material’s sustainability, could give cellulose acetate tremendous appeal for 3D printing – and giving Pattinson and Hart the honor of accomplishing what other materials scientists have been struggling to do. Discuss in the Cellulose forum at 3DPB.com.

[Source: MIT News]

 

Share this Article


Recent News

J&J’s Ethicon and FluidForm to Collaborate on Engineered Human Tissue with FRESH Bioprinting

3DPOD Episode 67: Remote Print Monitoring with The Spaghetti Detective’s Kenneth Jiang



Categories

3D Design

3D Printed Art

3D Printed Guns

3D Printer Reviews


You May Also Like

3DPOD Episode 66: Olaf Diegel, University of Auckland

Olaf Diegel is a professor at the University of Auckland who specializes in all aspects of design for additive manufacturing (DfAM). He also 3D prints guitars, other instruments, and eyeballs...

3DPOD Episode 65: 3D Scanning at the U.S. Space Force with Major Travis Tubbs

This time on the 3DPOD, we get to chat with Major Travis Tubbs of the U.S. Space Force. Surprisingly, a lot of the conversation was about plants, but we also...

3DPOD Episode 64: 3D Print Services with Clement Moreau, Sculpteo Founder

Clement Moreau founded Sculpteo and led the 3D print service for ten years before selling it to BASF. In this episode, we follow his journey, discuss what made Sculpteo successful,...

3DPOD Episode 63: Manufacturing in Space with Douglas Hofmann, Principal Scientist, NASA JPL

In this episode, Max and I fall all over ourselves to ask questions of Douglas Hofmann, Principal Scientist at NASA Jet Propulsion Laboratory (JPL). We also listen intently as Doug...


Shop

View our broad assortment of in house and third party products.