Harvard SEAS & Wyss Institute Researchers Experiment with Multifunctional Metamaterials

Share this Article

download-27While most of us have just gotten used to the wonders of 3D printing, a number of researchers have already moved far beyond that into the realm of the fourth dimension, with materials that are able to morph according to their environment. We’ve reported on this complex new technology from biomimetics to 4D scanning and much more—often to include intuitive apparel.

Now, researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and the Wyss Institute of Biologically Inspired Engineering at Harvard University are creating metamaterials that function in multiple ways, and can switch back and forth between uses. While the use of metamaterials is no longer a novelty, researchers wanted to expand their abilities beyond what has even been seen, allowing these textures not just to switch from one function to another, but to do so autonomously.

The research teams have created these metamaterials to work on any scale, from very large to very small. This is all outlined in their recent paper, ‘Rational design of reconfigurable prismatic architected materials,’ authored by Johannes T. B. Overvelde, James C. Weaver, Chuck Hoberman, and Katia Bertoldi.

one-metamaterials

Space-filling and periodic assemblies of convex polyhedra are. used as templates to construct prismatic architected materials

“Given that the underlying principles are scale-independent, our strategy can be applied to the design of the next generation of reconfigurable structures and materials, ranging from metre-scale transformable architectures to nanometre-scale tunable photonic systems,” state the researchers in their paper.

The metamaterials design project came about in 2014 as Katie Bertoldi, senior author on the paper and a John L. Loeb Associate Professor of the Natural Sciences at SEAS, began working with graduate student Johannes Overvelde, first author on the paper, and Chuck Hoberman, of the Harvard Graduate School of Design (GSD) and associate faculty at the Wyss and James Weaver, a senior research scientist at the Wyss. Hoberman shared a design idea for foldable structures with Bertoldi.

“We were amazed by how easily it could fold and change shape,” said Bertoldi. “We realized that these simple geometries could be used as building blocks to form a new class of reconfigurable metamaterials but it took us a long time to identify a robust design strategy to achieve this.”

foldinggif1

[Image: Johannes Overvelde/Harvard SEAS]

Together, they began creating a template that would allow them to extrude structures with very thin walls.

“By combining design and computational modeling, we were able to identify a wide range of different rearrangements and create a blueprint or DNA for building these materials in the future,” said Overvelde, now scientific group leader of the Soft Robotic Matter group at FOM Institute AMOLF in the Netherlands.

metamaterial

[Image: Johannes Overvelde/Harvard SEAS]

The latitude they discovered with their models, able to scan almost a million designs, allowed for tremendous experimentation in manipulating the materials and seeing how they responded overall.

“Now that we’ve solved the problem of formalizing the design, we can start to think about new ways to fabricate and reconfigure these metamaterials at smaller scales, for example through the development of 3D-printed self actuating environmentally responsive prototypes,” said Weaver.

This formalized design framework could be useful for structural and aerospace engineers, material scientists, physicists, robotic engineers, biomedical engineers, designers and architects.

“This framework is like a toolkit to build reconfigurable materials,” said Hoberman. “These building blocks and design space are incredibly rich and we’ve only begun to explore all the things you can build with them.”

wyss-metamaterials

[Image: John Kennard]

The researchers see potential for these metamaterials in areas to include:

  • Aerospace
  • Physics
  • Robotics
  • Biomedical engineering
  • Architecture

“Now that we’ve solved the problem of formalizing the design, we can start to think about new ways to fabricate and reconfigure these metamaterials at smaller scales, for example through the development of 3D-printed self actuating environmentally responsive prototypes,” said Weaver.

The research team received support from the Materials Research Science and Engineering Center and the National Science Foundation. Discuss in the Harvard forum at 3DPB.com.

[Sources: Harvard / Wyss Institute]

 

Share this Article


Recent News

What is Metrology Part 20 – Processing

University of Akron: Thesis Student 3D Prints PPF Structures for Bone Regeneration Applications



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Allevi Bioprint Pro Software Just Released, Provides Users with Step-by-Step Bioprinting

Headquartered in Philadelphia and founded in 2014, the Allevi Bioprint team has spent years in research and development regarding bioprinting, seeking the best results for creating a machine, supplies and...

Bioprinting at University of Pennsylvania: Impacts on Conductivity in Granular Hydrogels

To reach the goal of 3D printing human organs, bioprinting must continue to evolve. Researchers are not only aware of this, but as they are part of the process in...

Interview with Seok-Hwan You of Rokit Healthcare on Bioprinting

When Seok-Hwan You founded Rokit Healthcare the company was one of the first worldwide to be able to 3D print PEEK and other high-performance materials. It quickly grew to dominate...

Charles River Associates International on Bioprinting

Charles River Associates International is a company that advises governments, law firms, and companies on weighty strategic matters and issues related to specific expertise that the company has. CRA may...


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!