Exone end to end binder jetting service

CurVoxels Develops Robot to 3D Print Intricate Filigree Chairs

INTAMSYS industrial 3d printing

Share this Article

The Verner Panton chair.

The Verner Panton chair.

A group of students from the Bartlett School of Architecture at the University College London called CurVoxels have developed a new 3D printing technique that allows them to 3D print complex curved, three-dimensional structures. The team used the new process to build a set of intricately printed filigree cantilever chairs and a filigree spiral staircase. The Spatial Curves project was completed by the team at Bartlett’s Research Cluster 4, where the custom-made 3D printer was used to create the team’s own version of the iconic Panton chair. The chair was designed in 1906 by Danish designer Verner Panton and is the world’s first molded plastic chair.

Panton regularly redesigned his famous chair, and other designers would routinely apply their own design aesthetic to create their own versions of the classically shaped cantilever chair. For the Spatial Curves project, not only did the CurVoxels team choose to design their own version of the Panton chair, but they wanted to completely reinterpret how it was made. The goal was to see if their new 3D printing process could be applied to a previously existing 3D design. After successfully fabricating their own chairs, the team presented their project at Bartlett’s B-Pro Show 2015 graduation exhibition held in London and again at the Synthetic 2015 Exhibition in Le Mans, France.

3dp_filigreechairs_trioThe process of constructing the chair starts when the 3D model is voxelized, which is a process of breaking down an object into small “volumetric pixels.” The individual voxels are converted into a basic spatial curve, which is capable of adopting different orientations as well as generating various patterns throughout the chair. The size of each voxel changes depending on the amount of weight that the chair needs to accommodate and the 3D printing material is distributed in different densities. If the voxels are very small, the spatial curve essentially becomes a simple line, while larger voxels can become various patterns like the filagree design of the final chairs. The first simulations conducted twelve different design options that tested toolpath continuity, any resulting patterns, printability and the final object final density.

The 3D printer that was created by the team included a custom nozzle that is capable of extruding four- to six-millimeter-thick strings of the plastic filament that would completely solidify in the air. The robot 3D printer simply printed in three-dimensional space rather than along a two-dimensional additive layering process. An algorithmic technique was developed to control the amount of material that is extruded, as well as the specific path that the printer would take in order to print the chair in a continuous extrusion. This allowed the team to 3D print the chair completely uninterrupted, which was faster, used less material and produced a more solid piece of furniture while maintaining a high degree of detail. The designers also developed an app that allowed them to alter the pattern and increase density while it was being 3D printed in order to improve structural integrity.

“CurVoxels has developed an experimental digital technique for creating complex curvilinear space frame structure such as columns, chairs, staircase and pavilion, based on Mereology with one simple component by using combinatorial system and seamless large scale spatial 3D printing. Basically, Spatial Curves integrated the areas of digital design system with digital fabrication systems and has the objective of optimising the potential of computational design in architecture by overcoming the limitations of fabrication inherent to previous digital architectural design,” said the CurVoxels team of their project.

Here is some video of the filagree chairs being 3D printed:

Team CurVoxels is Hyunchul Kwon, Amreen Kaleel and Xiaolin Li, and their project tutors were Manuel Jiménez García and Gilles Retsin.

The goal of their project was to develop a new process of using advanced robotics to produce large-scale 3D printed objects. They chose the Panton chairs as a proof of concept, but the fabrication technique is applicable to virtually any type of furnishings, structural component or architectural feature. Tell us your thoughts on this project in the Architectural 3D Printing forum over at 3DPB.com.

3D printed filigree spiral staircase.

3D printed filigree spiral staircase.

[Images: CurVoxels]

Share this Article


Recent News

GE Additive Partnership to Establish BEAMIT Metal 3D Printing Powerhouse

Design for Disruption: 3D Printing Design for Installation



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Dream 3D Printing Soonicorns: Essentium, ICON & More

As of July 2021, 291 companies achieved the coveted mythical $1 billion status, far surpassing any previous year’s peak, according to financial platform Crunchbase. With 2021 proving to be a...

Massive 3D Printed Park Erected in Shenzen, China

Forget the mutually reinforcing buildup of their respective militaries – the real battle between the United States and China is in the field of 3D printing! You’ve probably heard of...

Featured

3D Printing Innovator’s Roundtable Webinar: Ditching DfAM and Embracing Design Freedom

In an industry where change is constant and unpredictable, professionals across the manufacturing industry have turned to additive manufacturing (AM) to overcome design and supply chain challenges. But conventional AM...

Startup Accelerator, Singapore: Dental 3D Printing, Services, and More

This is the eighth article detailing the 3D printing startup scene in Singapore. Teehee Dental Works Teehee Dental Works is a dental lab and dentist with a difference. Along with...


Shop

View our broad assortment of in house and third party products.