Texas A&M’s 3D Braille Printer Can Print on Any Curved or Flat Plastic Surface

Share this Article

Braille printing on a CD case

Braille printing on a a polycarbonate (PC) based common CD case

As technology improves, so do the lives of those individuals living with disabilities all around the world. 3D printing has become one of those technologies aiding in creating custom devices, prostheses, and more for individuals who previously would have been left with fewer reliable options. The visually impaired have found the technology of 3D printing to be quite beneficial in the fabrication of various sensory objects. We’ve seen a blind expectant mother get to touch a 3D printed replica of her unborn child back in May, and we have seen 3D printing used in the creation of various Braille tools over the past several months as well.

For a group of researchers at Texas A&M University, they wanted to take things a few steps further in utilizing 3D printing to create tools for the visually impaired. What they came up with was a 3D printer that is capable of printing Braille characters on any kind of plastic packaging used in common consumer products. Unlike other 3D printers, which are only capable of printing on flat surfaces, this machine is able to print on products regardless of the extent of existing surface curvature.

braille3

TAMU’s Braille printer

Created by the Texas A&M ‘3D Printeers’ team, under the supervision of Dr. Tanil Ozkan, TAMU Mechanical Engineering Professor, the printer is currently patent pending.

“[We hope to increase] the awareness of the 3D Printing community about the doability of [this 3D printer] on any kind of plastic packaging and ultimately help convince online or store-based retailers to also include Braille differentiated products in their product portfolio with very affordable secondary processing costs,” Dr. Tanil Ozkan tells 3DPrint.com.

brailleaniUnlike other 3D printers on the market today, which printing using mostly PLA or ABS plastics, the TAMU 3D Braille Printer uses a specially formulated 3D printing filament which provides for enhanced adhesion characteristics for printing onto every kind of polymeric surface. TAMU Mechanical Engineering senior Yasushi Mizuno, Boston‐based professional software engineer Artug Acar, and Ozkan contributed to the realization of this proprietary technology. The filament that the printer uses is a plant-based sustainable and recyclable thermoplastic with optimized rheological properties, a durable surface texture, and it features enhanced UV and oxidation resistance. It was developed by TAMU Mechanical and Industrial Engineering students Bryan Conlee, Eduardo Vasquez, and Yasushi Mizuno in collaboration with Ozkan.

The material properties that this printer is capable of printing with ensures that the Braille characters that are printed onto objects stay there, don’t peel off, and are resistant to normal wear and tear. In order for the printer itself to accomplish printing on various curved surfaces, it was designed in such a way that it can recognize the curvature of polymeric surfaces on various consumer product packaging. It uses a non-contact sensor to determine the curvature of the object to be printed on.

“Flat or curved polymeric surfaces, whose topography data are collected via the non‐contact sensor are reconstructed automatically in the design software and used as the reference surface to calculate the x, y and z offsets through spline fitting before generating the additive manufacturing process code sequence for the actual 3D printing of Braille characters,” Ozkan and the rest of the team at Texas A&M tells us.

braille7The idea is to convince retailers that this technology will aid them in labeling packaging for the visually impaired, via a method that is both affordable and reliable. Whether it is dosage instructions on a medicine bottle, an expiration date on some sort of food packaging, or anything else that could be beneficial to the visually impaired, this technology certainly provides much hope for making their lives a bit less burdensome.

brailleIt is the intention of these researchers to donate all the rights associated with the pending patent to the Braille Museum and American Printing House for the Blind, Inc. in Louisville, Kentucky, in order to support further research. While this technology currently is targeting solutions for Braille printing, without a doubt, it could also provide for other uses within the 3D printing space. The idea of printing onto curved surfaces, and printing using material that adheres reliably to other plastics, could provide for much benefit in other fields as well.

Texas A&M has also entered this design into the NASA Tech Briefs Create the Future Design Contest, under the ‘Consumer Products’ category.

What do you think about this unique 3D Braille printer? Discuss in the TAMU 3D Braille Printer forum thread on 3DPB.com. Check out the Braille printer in action below.

Share this Article


Recent News

Daring AM: SpaceX’s 3D Printed Gear Took the Spacewalk Game to New Heights

3D Printing News Briefs, September 15, 2024: Crowdfunding, EVs, Microalgae, & More



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Webinar and Event Roundup: September 14, 2024

In this week’s roundup, Divide By Zero Technologies is having a launch event for its new 3D printer tomorrow. Stratasys continues its tour of North America, as well as its...

Featured

3DPOD 217: 3D Printing Money with Danny Piper, NewCap Partners

Danny Piper, of NewCap Partners, helps companies with mergers and acquisitions, financial analysis, and more, particularly in the additive manufacturing sector. As an analyst and sparring partner for the industry,...

Featured

Printing Money Episode 21: Q2 2024 Earnings Analysis with Troy Jensen, Cantor Fitzgerald

Like sands through the hourglass, so is the Q2 2024 earnings season.  All of the publicly traded 3D printing companies have reported their financials, so it is time to welcome...

Protolabs Buys DLP-SLA Combo 3D Printer from Axtra3D

Axtra3D has sold a Lumia X1 to Protolabs, to be installed at the manufacturing service provider’s Raleigh, North Carolina location. The Lumia X1 is a high-throughput vat polymerization system that...