We’ve seen some truly phenomenal applications of 3D printing in the healthcare arena, where 3D printed medical models have shortened times in the operating room, enhanced efficiency and precision in procedures and in training, and directly saved lives and even a spleen and a kidney. There’s no denying at this point that 3D printing certainly has a place in hospitals, from explaining procedures to patients to training surgeons to playing a direct role in complex operations in creating both models and implants. In order to broaden the availability of this application, wider adaptation and accessibility must occur–and a new collaboration between AstroPrint and the National Institutes of Health (NIH) will do just that.

3D model of a stroke from 3DPrintforHealth: There are 3 total STL files: the first is of the vessels in the brain; the second is of the hollow skull; the third is a filling so that encases the vessels, allowing them to be printed without the need for support material.
Together, AstroPrint–a 3D printing startup based in San Diego that got its start on Kickstarter and also partners with entities such as Airwolf 3D, 3D Hubs, and CGTrader–and the NIH are working to make medical models not only accessible, but incredibly simple to create via 3D printing.
“As someone who started in medicine then moved into 3D printing software, I’m excited about what 3D printing can do for medicine and medical education,” said Drew Taylor, AstroPrint CEO. “This partnership is the first step in making 3D printing a standard part of the medical industry.”
The NIH 3D Print Exchange has partnered up with AstroPrint to ease the way for those seeking to use 3D printing for bioscientific research, education, and applications. The Exchange, launched in June 2014, functions as a collaboration between the National Institute of Allergy and Infectious Diseases, the Eunice Kennedy Shriver National Institute for Child Health and Human Development, and the National Library of Medicine.
“3D printing is a potential game changer for medical research,” said NIH director Francis S. Collins, M.D., Ph.D., when the NIH 3D Print Exchange launched one year ago. “At NIH, we have seen an incredible return on investment; pennies’ worth of plastic have helped investigators address important scientific questions while saving time and money. We hope that the 3D Print Exchange will expand interest and participation in this new and exciting field among scientists, educators and students.”
Check out this video for more information on the NIH 3D Print Exchange:
Thanks to this extensive, and growing, repository, it doesn’t take a strong background in 3D design and modeling to be able to 3D print accurate medical models. Among the designs are organs, muscles, bones, viruses, and more–all offering interactive examination of human anatomy that might provide significant benefit to researchers, doctors, and others in the medical field. Additional models include labware such as beaker and test tube holders, handles, knobs, and more.
And with AstroPrint stepping in, it just became even simpler and more streamlined.
“AstroPrint’s vision of enabling a one-click 3d print API is now closer to reality with the implementation of this developer tool,” said Daniel Arroyo, AstroPrint’s CTO.
The process at the NIH 3D Print Exchange has been relatively simple from its start, with users needing only to follow a few steps:
- Choose and download a model
- Define more than 130 settings on the downloaded model, via engineering-grade software
- Ready the files and export to the 3D printer
Admittedly, those steps may not be so simple after all–the 130+ setting definitions might be daunting–and that’s where AstroPrint steps up to the plate. The process become a bit more streamlined now:
- Select a model and start a print with AstroPrint, as files will be automatically imported via the cloud
- Set 3 print settings:
- Printer
- Material
- Print quality
- AstroPrint’s algorithms set the rest, and all that’s left is to hit “print” for wireless printing and monitoring to begin
Users whose 3D printers are not AstroPrint-enabled can utilize the same preparation process through the partnership, and simply use the software to ready the model for printing on their machine. From start to finish, the entire preparation process now takes under 5 minutes before printing starts; check out the video below to see the entire start-to-finish process.
Thanks to AstroPrint, the NIH 3D Print Exchange will now be that much smoother and more accessible to a wider number of medical practitioners. And that’s exactly what AstroPrint has in mind.
“If your business offers 3D Printable content, we want to help distribute that content in the most user-friendly and straightforward way in the industry,” says AstroPrint’s Arroyo.
Is this initiative one that you feel has great benefits for the creation of medical models? Let us know if you’ve used the model repository and found it to be as easy as it sounds in the AstroPrint and NIH Team Up forum thread over at 3DPB.com.
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
3D Printing Webinar and Event Roundup: January 19, 2025
We have a couple of in-person events in Las Vegas to tell you about this week, plus a few webinars, including one about 3D printing for dental restorations. Read on...
Quebec Man Admits to Hate Speech and 3D Printed Gun Scheme
A Quebec man has admitted to promoting antisemitic hate speech while trying to manufacture guns with 3D printers. On December 13, 2024, 38-year-old Pascal Tribout pleaded guilty to multiple charges,...
Cracking the Case: How Police and Science Took Down a 3D Printed Gunsmith
It started with a tip in January 2022. Police in the West Midlands region of the UK launched Operation Captiva after receiving information that something suspicious was happening in one...
Luigi Mangione Reportedly Used 3D Printed Ghost Gun to Kill UnitedHealthcare CEO Brian Thompson
Luigi Mangione has been arrested on weapons charges and is believed to be the suspect in the assassination of UnitedHealthcare CEO Brian Thomson. It is now widely reported that the...