AMS 2025

Industrial Designer Creates The ‘Exo’ 3D Printed Prosthetic Leg with Aesthetics in Mind

AM Research Military

Share this Article

Brooklyn, New York industrial designer William Root is using 3D scanning, modeling, and printing to create customized prosthetic limbs. Currently, he is working on the prototype for what he calls the “Exo-Prosthetic Leg.”

Each year in the US around 185,000 amputations are performed, 90% of which involve the loss of lower extremities. There are approximately 2 million amputees in the country. The financial, physical, and psychological effects of such a procedure can and often do cause additional trauma to patients, as does adapting to an awkward and sometimes ill-fitting new limb.

leg x 3

Prosthetic limbs range in functionality, appearance and, of course, expense. The most expensive prosthetics are the robotic ones that are prohibitively expensive to most amputees but are quite remarkable in their intricacy and capacity to restore almost complete function of a limb to amputees. As the technology improves and manufacturing of such high-tech prostheses becomes affordable, probably via 3D printing whenever design aspects permit, these devices will become more affordable to people with amputations.

Another problem with the current system of prosthetic production is the customization process of traditional prosthetic limbs, which is typically time consuming, requiring a painstaking measuring process and often numerous fittings and adjustments. Ultimately, amputees must make extreme adjustments in order to adapt to prosthetic limbs, which are often not particularly attractive or lifelike.

Understandably, form has been considered secondary to function where prosthetic devices are concerned. Root, however, doesn’t think that appearance needs to suffer for the sake of increased function. Root has designed the Exo-Prosthetic Leg, which is produced using 3D scanning of the residual and the remaining limb to create a precisely matched and properly fitting prosthetic replica.

leg fit socket

Following the 3D scanning process, Root creates a model for the prosthetic leg using 3D modeling software. To aid in precise fitting, FitSocket technology, which was developed in the Biomechatronics lab at MIT, is used to analyze the tissue properties of the leg (or, ultimately, other missing extremities). Measurements are taken that fit down to the millimeter so patients do not experience some of the more awkward and physically uncomfortable effects of wearing and managing prosthetic devices.

A 3D mesh model of the prosthesis is produced and is combined with standard, manufactured prosthetic mechanisms, which fit inside the Exo-Prosthetic Leg. Root can customize the prostheses by using different patterns with the super lightweight but durable titanium mesh of the prosthetic’s surface. Customers can also choose a color they prefer. Root envisions the Exo-Prosthetic Leg as scaffolding for customers who’d like to cover the artificial limb with a custom-designed silicone sleeve.

leg 4th

In addition to 3D printing the attractive design of the mesh surface, Root prints customized connectors for the separate components, that fit within the prosthesis. The Exo-Prosthetic Leg is still in the development phase as Root refines its design to produce a fully-functional prototype. At all stages, 3D technology has been key to the project, which is garnering a great deal of attention and clearly provides real promise for millions of people.

Let us know what you think of this artistic and functional design at the Exo-Prosthetic Leg forum thread at 3DPB.com.

leg main image

Share this Article


Recent News

Formnext 2024: Sustainability, Large-Format 3D Printers, & More

Nano Dimension Builds Momentum After Q3 Earnings: Julien Lederman Talks Strategy



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing News Briefs, November 30, 2024: On-Demand Spare Parts, Shoes, & More

Kicking off today’s 3D Printing News Briefs, Phase3D launched a real-time production control system for AM, and the Royal Netherlands Navy is using Ultimaker 3D printers for on-demand spare parts...

Meet Xell, xolo’s Budget-Friendly Bioprinter for Labs

Building on its expertise in volumetric bioprinting, xolo has unveiled Xell. This compact bioprinter brings rapid fabrication of complex structures without visible layers to research labs at an unprecedented price....

3D Printing Financials: Nano Dimension’s Q3 Success Meets Activist Opposition

With its best third quarter ever, Nano Dimension (Nasdaq: NNDM) proves that smart investments and tighter operations can deliver big results—even in a tough market. The Israeli-based company ended Q3...

Sponsored

Creality Shines at Formnext 2024, Showcasing K2 Plus, New DIY Model and Accessories

Creality proudly participated in Formnext 2024, continuing its tradition of excellence as a long-standing exhibitor at one of the world’s premier trade fairs for additive manufacturing. This year, Creality highlighted...