Honeywell provides turbine propulsion engines for helicopters, business aircraft, and military trainers, and has been using additive manufacturing at its lab in Phoenix for over 15 years. It now produces hundreds of aircraft components, including the first 3D printed, FAA-certified, flight-critical engine part back in 2020. This part was an important structural component in the ATF3-6 turbofan engine, and the company is currently working to develop a new family of turbofan engines that will be more lightweight, quieter, more powerful, and able to run on fully sustainable aviation fuel. Honeywell is once again turning to AM for these next-generation engines, and is actually believed to be one of the first jet engine manufacturers to make turbine blades with 3D printed ceramic molds.
It currently takes quite a long time to manufacture turbine blades using traditional methods. So the hope is that by using ceramic 3D printing to make the molds for these first-stage high pressure turbine blades, Honeywell can shorten the development timeline for its engines, as well as the cost.
“Turbine blades are made through an investment casting process that only a few foundries in the world can handle. It involves machining extremely complex metal dies and tooling to create ceramic molds, which are then cast with a molten superalloy to form the blades,” Honeywell Chief Manufacturing Engineer Brian Baughman explained.
To speed things up, Honeywell is working with industrial 3D printing company Prodways Group, which offers a wide range of 3D printing systems and composite, hybrid, and powder materials. Last year, the company installed Prodways’ newest MOVINGlight printer, the CERAM PRO 365, at its Phoenix facility for this purpose. Using this high-resolution, vat-based technology, Honeywell processes ceramic slurry to directly print the molds for its turbine blades.
“Our 3D printers are a perfect match for this use case. We can process ceramics slurries to build a large number of parts in a single day and deliver consistent manufacturing results at every print,” said Michaël Ohana, Prodways Group CEO.
Prodways, which reported a drop in revenue for Q1 2024, has been working for several years with aeronautics companies to develop industrial manufacturing processes, with its MovingLight technology, for aircraft engine components. That’s because ceramic materials, which offer heat resistance and strength, need high-quality, reliable methods of 3D printing.
Long gone are the days when ceramic was just thought of as a material for making pottery—these brittle, corrosion-resistant materials have plenty of applications, from cooling systems and dental crowns to the military and, obviously, aviation parts. In fact, according to a report by AM Research on “Ceramics Additive Manufacturing Production Markets,” one of the industrial application segments with the most potential for technical ceramics is aerospace and defense.
According to Mike Baldwin, Principal R&D Scientist, it can take up to two years using investment casting to make the necessary turbine blades for Honeywell’s engine development process. But if speeding things up was the company’s goal, then 3D printing is definitely the way to go.
“Additive manufacturing lets us take the design, print the mold, cast it, test it and get real numbers to validate our models – and the whole process takes just 7-8 weeks. If we need to tweak the design, we can change it electronically and get another blade in about six weeks,” Baldwin continued, noting that the technology allows for more flexibility in accelerating development, creating the best product, and managing expenses, as it can cost up to $1 million to make even small changes to the blade design.
“Reducing development cycle time is our primary objective, but we also anticipate saving several million dollars in development costs compared to using the traditional blade casting process.”
Honeywell is definitely focused on using metal AM for aerospace applications, not only for itself but others as well. For companies that need to fabricate precision components, like turbine blades, in lower volumes, additive is the ideal choice.
“Low volumes are often a struggle since the upfront tooling cost for a turbine blade is very high and fabrication requires a long lead time,” Baughman concluded. “Additive manufacturing makes a lot of sense in cases like this.”
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
Print Services
Upload your 3D Models and get them printed quickly and efficiently.
You May Also Like
Metal Powder Supplier Elementum 3D Added to $46B Air Force Contract
Elementum 3D, a Colorado-based developer and supplier of metal powders used in additive manufacturing (AM), announced that the company has been added to the vendors list in the fourth on-ramp...
Ursa Major Lands $28.6M AFRL Deal for 3D Printed Draper Engine Flight Demo
The US Air Force Research Laboratory’s (AFRL’s) Rocket Propulsion Division at Edwards Air Force Base has awarded a $28.6 million contract to Ursa Major for follow-on work related to the...
3D Printing Financials: Rocket Lab’s Record-Breaking Year and Over 20 Launches Coming in 2025
Rocket Lab (Nasdaq: RKLB) closed 2024 with its best year yet. The company launched more rockets, signed more contracts, and expanded deeper into spacecraft and satellite production than ever before....
US Air Force Taps Beehive to Study 3D Printed Jet Engines
Propulsion 3D printing firm Beehive Industries secured a contract from the U.S. Air Force Life Cycle Management Center through SOSSEC. SOSSEC is a company that manages Other Transactions Authority (OTA)...