Honeywell 3D Prints Ceramic Molds for Turbine Blades

RAPID

Share this Article

Honeywell provides turbine propulsion engines for helicopters, business aircraft, and military trainers, and has been using additive manufacturing at its lab in Phoenix for over 15 years. It now produces hundreds of aircraft components, including the first 3D printed, FAA-certified, flight-critical engine part back in 2020. This part was an important structural component in the ATF3-6 turbofan engine, and the company is currently working to develop a new family of turbofan engines that will be more lightweight, quieter, more powerful, and able to run on fully sustainable aviation fuel. Honeywell is once again turning to AM for these next-generation engines, and is actually believed to be one of the first jet engine manufacturers to make turbine blades with 3D printed ceramic molds.

It currently takes quite a long time to manufacture turbine blades using traditional methods. So the hope is that by using ceramic 3D printing to make the molds for these first-stage high pressure turbine blades, Honeywell can shorten the development timeline for its engines, as well as the cost.

“Turbine blades are made through an investment casting process that only a few foundries in the world can handle. It involves machining extremely complex metal dies and tooling to create ceramic molds, which are then cast with a molten superalloy to form the blades,” Honeywell Chief Manufacturing Engineer Brian Baughman explained.

Honeywell’s HTF7000 Turbofan Engine Family

To speed things up, Honeywell is working with industrial 3D printing company Prodways Group, which offers a wide range of 3D printing systems and composite, hybrid, and powder materials. Last year, the company installed Prodways’ newest MOVINGlight printer, the CERAM PRO 365, at its Phoenix facility for this purpose. Using this high-resolution, vat-based technology, Honeywell processes ceramic slurry to directly print the molds for its turbine blades.

“Our 3D printers are a perfect match for this use case. We can process ceramics slurries to build a large number of parts in a single day and deliver consistent manufacturing results at every print,” said Michaël Ohana, Prodways Group CEO.

Prodways, which reported a drop in revenue for Q1 2024, has been working for several years with aeronautics companies to develop industrial manufacturing processes, with its MovingLight technology, for aircraft engine components. That’s because ceramic materials, which offer heat resistance and strength, need high-quality, reliable methods of 3D printing.

Long gone are the days when ceramic was just thought of as a material for making pottery—these brittle, corrosion-resistant materials have plenty of applications, from cooling systems and dental crowns to the military and, obviously, aviation parts. In fact, according to a report by AM Research on “Ceramics Additive Manufacturing Production Markets,” one of the industrial application segments with the most potential for technical ceramics is aerospace and defense.

A ceramic 3D printed mold for Honeywell’s turbine blades.

According to Mike Baldwin, Principal R&D Scientist, it can take up to two years using investment casting to make the necessary turbine blades for Honeywell’s engine development process. But if speeding things up was the company’s goal, then 3D printing is definitely the way to go.

“Additive manufacturing lets us take the design, print the mold, cast it, test it and get real numbers to validate our models – and the whole process takes just 7-8 weeks. If we need to tweak the design, we can change it electronically and get another blade in about six weeks,” Baldwin continued, noting that the technology allows for more flexibility in accelerating development, creating the best product, and managing expenses, as it can cost up to $1 million to make even small changes to the blade design.

“Reducing development cycle time is our primary objective, but we also anticipate saving several million dollars in development costs compared to using the traditional blade casting process.”

Honeywell is definitely focused on using metal AM for aerospace applications, not only for itself but others as well. For companies that need to fabricate precision components, like turbine blades, in lower volumes, additive is the ideal choice.

“Low volumes are often a struggle since the upfront tooling cost for a turbine blade is very high and fabrication requires a long lead time,” Baughman concluded. “Additive manufacturing makes a lot of sense in cases like this.”

Share this Article


Recent News

OCEAN 3D Printer from Azul3D Prints at 300 mm per Hour

3D Printing News Unpeeled: Holography in Space & Fyous Reusable Molds



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Why Do We Have to Pretend We’re Going to 3D Print Homes on Mars?

Maybe someday we’ll 3D print houses on Mars. But how much effort and time would it take to get there? And, is it even a good goal? Recently, at AI...

UW-Madison Engineers 3D Print RAM Devices in Zero Gravity with NASA Funding

Engineers from the University of Wisconsin-Madison (UW-Madison) 3D printed RAM (Random Access Memory) device units in zero gravity to show that electronic components can be produced in space. This capability...

3D Printing Financials: Protolabs’ Q1 3D Printing Revenue is Flat, Company Advances in Technology Push

Protolabs (NYSE: PRLB) has kicked off 2024 with a mild boost in revenue, revealing how the Minnesota-based company manages to adapt and thrive even in uncertain market conditions. While the...

NASA Backs Project for 3D Printing Space Sensors

NASA granted $300,000 to Florida State University (FSU) and Florida Agricultural and Mechanical University (FAMU) to pioneer a project using 3D printing to develop cutting-edge sensors capable of withstanding the...