AMS 2025

$1.1M Grant to Drive Q5D’s Automated Wiring Tech

AM Research Military

Share this Article

Q5D, a UK-based company, specializes in creating an automated wire harness robot cell. The firm has recently received a $1.1 million grant to further automate its CY1000 wiring solution. For this project, Q5D will collaborate with the Manufacturing Technology Centre and Siemens reseller Emixa.
Q5D 3D prints wiring loom.

Q5D 3D prints wire tracks. Image courtesy of Q5D.

Q5D’s cell employs a robotic arm that can deposit conductive inks, print polymers, and place circuits and other components, aiming to automate the creation of wire harnesses. These harnesses are intricate assemblies crucial to the functionality of airplanes, cars, and devices like 3D printers. Traditionally, wire components, circuits, and plugs are sourced from countries such as China, then assembled into specific configurations needed for products like a Volkswagen Golf, often in countries like Romania. The assembled harnesses are then shipped to another location, such as the Czech Republic, for integration into the electrical systems before being installed into vehicles.

Wire harness assembly has traditionally been seen as a labor-intensive step not suitable for automation. However, increasing concerns over supply chain resilience and the impact of global shocks have heightened industry and government interest in Q5D’s technology as a potential solution for automating the production of these harnesses.

Q5D's CU500 five-axis platform.

Q5D’s CU500 five-axis platform. Image courtesy of Q5D.

Q5D develops the firmware and controls for its machines in-house, while further operations are managed by a custom implementation of Siemens NX CAD/CAM, created by Emixa. The consortium of companies has now received funding to simplify the overall workflow and user interface, a challenging task considering the wide variety of surfaces Q5D’s technology can be applied to. The diversity of operations and sequences possible adds to the complexity.

Additionally, controlling the motion stage arm is critical, as it must manage various heads that deposit different materials while moving and positioning. Ensuring this process can be repeated millions of times without error adds another layer of complexity to the system.

Q5D is collaborating with clients on various applications, such as embedding wiring in aircraft components, integrating NFC communications into objects, and wiring for car bumpers. Although gaining the trust of major automotive and aerospace industries may take time, the company is addressing a significant market, largely unchallenged by competitors. The lack of competition is surprising, especially when considering the vast potential applications, such as equipping every lamppost worldwide with sensors or enhancing internet connectivity in cars and phones through additional antennas. These advancements are increasingly likely as the demand for smarter, more connected environments grows.

The opportunity for the conformal placement of sensors and 3D printed components is substantial, yet currently, there are no complete automation solutions for many of these tasks. As the world moves towards greater connectivity and sensor integration, the necessity to equip millions of items with these technologies will escalate. This substantial market opportunity appears to be overlooked, suggesting that more attention should be directed towards this sector, anticipating more market entrants in the future.

Share this Article


Recent News

3DPOD 230: AM for Aerospace, Defense and More with Tim Simpson, NASA & Penn State

ADDMAN Adds Continuous Composites Technology for Hypersonics and UAV Applications



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Lockheed Martin Adds 16,000 Square Feet of 3D Printing to Texas Facility

Defense giant Lockheed Martin has unveiled a substantial increase in its additive manufacturing (AM) capabilities with an expansion of its facility in Grand Prairie, Texas. The addition includes some 16,000...

Featured

EOS Launches New P3 NEXT SLS 3D Printer at Formnext 2004

EOS, the German-US leader in additive manufacturing (AM) solutions, has launched the P3 NEXT selective laser sintering (SLS) printer at Formnext 2024 in Frankfurt, Germany (November 19-22). EOS created the...

3D Printing Webinar and Event Roundup: November 10, 2024

We’ve got another busy week ahead of webinars and events around the world! There are multiple open houses and conferences, advanced AM training, a 3D printer launch event, our own...

Dinsmore Gains Ability to 3D Print Functional Stents Thanks to Axtra3D

As essentially everyone familiar with additive manufacturing (AM) knows, one of the greatest advantages of 3D printing technologies is the potential to produce parts with complex geometries that are unachievable...