Next-Gen Drug Testing: Scientists Bioprint Long-Term Colon Cancer Models

Share this Article

Imagine a world where we can mimic the way cancer grows and evolves in the human body without actually relying on human trials. Building on this vision, scientists from CTIBiotech in France and Bulgaria’s Medical University of Plovdiv, with the help of biotech firm Transgene, have taken a monumental step towards that reality.

This groundbreaking research, titled World’s First Long-Term Colorectal Cancer Model by 3D Bioprinting as a Mechanism for Screening Oncolytic Viruses, was published in a special issue of the medical journal Cancers MDPI on Recent Advances in Basic and Clinical Colorectal Cancer Research.

Understanding the challenge

Colorectal cancer, or colon cancer, is a primary global health concern. Every year, over 1.8 million people are diagnosed with this deadly disease. Furthermore, the World Health Organization (WHO) predicts that up to 12 million people might succumb to various types of cancer by 2030.

With the urgency to find effective treatments, the current drug development methods are far from perfect. Too many promising drugs, which seem effective in lab settings, fail in real-world tests on humans. This difference often arises because the controlled environments of labs can’t capture the complexity of the human body. Factors like metabolism, immune responses, interactions with other substances, and unexpected side effects can change a drug’s efficacy when transitioning from a petri dish to a patient. This highlights the need to develop more realistic models for drug testing, making sure potential treatments have a better chance of succeeding in real-world scenarios.

To address this, the research team harnessed the potential of 3D bioprinting. In this case, the scientists created microtumors (human biological models of actual tumors) that mimicked the behavior of real-life colon cancer.

Using samples donated by patients who had undergone surgical treatments, the scientists successfully developed protocols to print these 3D cancer models. They then nurtured these models for a period ranging from a single day to an impressive five months. This longevity, a record in the scientific community, proved an outstanding opportunity to study how the cancer evolved and responded to treatments over time.

The depth of this study’s findings highlights the potential of these bioprinted models. According to the researchers, their approach shows the pivotal role of humanized models in future chemotherapeutic and cellular-therapeutic strategies. These 3D bioprinted colorectal cancer tumors didn’t just exist; they thrived, replicating their growth in a lab environment over short and extended durations. This development offers a cost-effective system for screening not only basic chemotherapies but also advanced therapeutic strategies, which ultimately could lead to lower patient treatment costs and a wider spread of global cancer therapy support.

Next-Gen treatment

Researchers used bioink with cells sourced from a patient’s tumors mixed with a solution rich in nutrients and materials that promote growth. Then, they 3D printed a structure that accurately represents the patient’s tumor. This significantly improved over previous methods, which often produced inconsistent results.

The successful nurturing of these bioprinted models is not just a feather in the cap for these scientists, but it opens doors for the future of personalized medicine. With these models, doctors and researchers can potentially determine the most effective therapy tailored specifically for each patient.

Bioprinting is now a definable part of the personalized medicine process with a clear role in creating tissues for drug screening. Image courtesy of CTIBiotech.

From the frontlines

CTIBiotech’s Chief Scientific Officer and Founder, Colin McGuckin, emphasized the potential of this research: “CTIBiotech has been innovating for ten years in tissue engineering and 3D bioprinting for the benefit of human health. The development of drugs with human-like tumor models is essential for the next generation of cancer  treatment.”

A professor of regenerative medicine and specialist in cancer research, McGuckin, said on social media that the future of treating cancer patients is better “following patients day by day with personalized medicine and targeting the cancer wherever it is hiding.” He also highlighted the importance of supporting advanced cancer research that relies on bioprinting and advancing therapies with Oncolytic Virus (OV) strategies (OVs are viruses that specifically target and kill cancer cells while leaving normal cells largely unaffected).

Patient tumor characteristics and resulting printed tumor models. Image courtesy of CTIBiotech.

Meanwhile, Eric Quemeneur from Transgene and Professor Victoria Sarafian from the Medical University of Plovdiv highlighted how these models overcome the limitations of current methods, presenting a promising strategy for precision therapy and drug development.

“Patient-derived tumoroids have become an important component of our preclinical characterization process, overcoming some critical limitations of current in vitro and in vivo models for oncolytic viruses. This recent achievement with 3D bioprinted metastatic colorectal carcinoma cells will allow the long-term follow-up of the evolution of tumor features and of its microenvironment under treatment. More generally, this step was essential in the path towards more representative models for the complexity and diversity of tumor phenotypes and will be useful in developing better therapeutic strategies for the future,” adds Quemeneur, the Executive Vice President and Chief Scientific Officer at Transgene.

Brighter tomorrow

The significance of this research cannot be overstated. The joint efforts of this collaborative work have resulted in a reliable platform that can potentially accelerate the development of effective cancer treatments.

In a nutshell, these bioprinted microtumors could be considered highly realistic practice dummies for the scientific community. They offer a close-to-real-world environment to test new drugs, ensuring that when a promising candidate emerges, it has a better chance of succeeding in human trials.

This is not the first time the French startup has made headlines. It also pioneered the production of functional human tissue using bioprinting for regenerative medicine, pharmaceutical developments, and the dermal cosmetic industry. With a strong, decades-old basis on cancer research, founders McGuckin and Nico Forraz have perfected a bioprinting technique to develop microtumors, hoping the technology and tissue models will improve drug development platforms and predictive medicine. As bioprinting continues to evolve, CTIBiotech remains at the forefront of Europe’s bioprinting sphere, showing the possibilities at the intersection of innovation and determination.

Share this Article


Recent News

Daring AM: SpaceX’s 3D Printed Gear Took the Spacewalk Game to New Heights

3D Printing News Briefs, September 15, 2024: Crowdfunding, EVs, Microalgae, & More



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Webinar and Event Roundup: September 14, 2024

In this week’s roundup, Divide By Zero Technologies is having a launch event for its new 3D printer tomorrow. Stratasys continues its tour of North America, as well as its...

Featured

3DPOD 217: 3D Printing Money with Danny Piper, NewCap Partners

Danny Piper, of NewCap Partners, helps companies with mergers and acquisitions, financial analysis, and more, particularly in the additive manufacturing sector. As an analyst and sparring partner for the industry,...

Featured

Printing Money Episode 21: Q2 2024 Earnings Analysis with Troy Jensen, Cantor Fitzgerald

Like sands through the hourglass, so is the Q2 2024 earnings season.  All of the publicly traded 3D printing companies have reported their financials, so it is time to welcome...

Protolabs Buys DLP-SLA Combo 3D Printer from Axtra3D

Axtra3D has sold a Lumia X1 to Protolabs, to be installed at the manufacturing service provider’s Raleigh, North Carolina location. The Lumia X1 is a high-throughput vat polymerization system that...