AMS 2024

Doctors Create a 3D Printed Knee Meniscus at Columbia University Medical Center

Electronics
Metal AM Markets
AMR Military

Share this Article

k5If you’re an athlete or a sports fan, then you are probably aware of how common knee injuries are among athletes. Physically active people and the elderly are also susceptible to knee problems whether because of injuries or due to the effects of aging, particularly from arthritis. Most common are injuries to the meniscus, the portion of the knee commonly called the “kneecap.” The meniscus is the crescent-shaped cartilage that covers the joint of the knee. More accurately, it is referred to as the menisci because there are two of them. The conventional treatment for a damaged meniscus is to repair small tears. With larger tears, the meniscus must be removed, which obviously leaves the knee joint vulnerable. Transplanting tissue has not been tremendously successful, so a better treatment is desperately needed, given that around one million meniscus surgeries are performed each year in the United States.

Now, researchers at Columbia University Medical Center in New York City have developed a new method for treating damaged menisci: 3D-printed implants. Research team leader, Jeremy Mao, DDS, PhD the Edwin S. Robinson Professor of Dentistry (in Orthopedic Surgery) explained why current treatments for meniscal injuries were less than satisfactory. “At present,” explained Dr. Mao, “there’s little that orthopedists can do to regenerate a torn knee meniscus.” The new treatment, however, would allow surgeons to replace the damaged tissue completely.

In a paper published on Dec. 9, in Science Translational Medicine, the team at Columbia explained the process, which has been successfully tested in sheep. The procedure begins with MRI k4scans of the menisci in the undamaged knee of the patient. The MRI scans are then converted into a 3D image of the healthy knee. Data from the 3D image is used to produce a 3D-printed scaffold, which is the precise shape of the healthy meniscus. It takes around 30 minutes to print the new meniscus with a material called polycaprolactone, a biodegradable polymer.

That’s only part of the process, however. In order to ensure that the new meniscus will form from the scaffolding once it is implanted into the patient, the scaffold is infused with connective growth factor (CTGF) and transforming growth factor β3 (TGFβ3), both recombinant human proteins. In a feat of precise tissue engineering, the two proteins are released in very specific order in particular regions of the scaffold. This system of sequential delivery, the Columbia team found, attracts stem cells that already exist in the patient’s body and encourages them to create meniscal tissue.

k2

The scaffold is inserted via a simple surgical procedure into the knee and it takes between four to six weeks for the 3D printed meniscus to regenerate. The scaffold eventually dissolves and the body eliminates it. Typically, with tissue engineering procedures, stem cells are taken from the body and the critical work happens in a lab. In this new approach, the cellular interaction takes place in the patient’s body.k3

Scott Rodeo, MD, a sports medicine orthopedic surgeon and researcher at the Hospital for Special Surgery in New York City is the co-author of the 3D-printed menisci study. Dr. Rodeo believes that this procedure “would potentially be applicable to the many patients who undergo meniscus removal each year.” So far, sheep have been the test patients because their knees closely resemble those of humans. At this stage in the study, the research team is looking at the endurance of the regenerated tissue. However, the team is optimistic and believes that once the procedure has been refined and approved for use in human patients, the process of getting your new, personalized 3D printed scaffold, once your MRI has been completed, could take a matter of days. The researchers are awaiting funding before they can move on to clinical trials.

Let us know your thoughts on yet another amazing medical use for 3D printing.  Discuss in the 3D Printed Meniscus forum thread on 3DPB.com.  Check out the video below showing the printing process in action:

Share this Article


Recent News

3D Printing to Reach $18.8B in Revenues in 2023

Cracks Emerge in 3D Printed Toilet, Titomic Cold Spray Used in Satellite and Nanoscribe 2GL



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

CELLINK Bioprinter Enables Bioprinted Hair Follicles for Skin Regeneration and More

In a landmark achievement, researchers at Rensselaer Polytechnic Institute in New York have successfully 3D-printed hair follicles in lab-grown human skin tissue, marking a significant advancement in the field of...

Featured

Iowa Demolishes Its First 3D Printed Home

In May 2023, the city of Muscatine, Iowa embarked on an ambitious plan to construct 3D printed homes. The weekend before Thanksgiving, the first such home was demolished. This project,...

Featured

BICO’s Revival: A Fresh Era with Maria Forss at the Helm

Swedish biotech company BICO (STO: BICO) has been making waves in the industry recently. Ever since Maria Forss assumed the role of CEO in November 2023, the company seems to...

3D Printing Webinar and Event Roundup: November 26, 2023

Things are getting busy again in terms of 3D printing webinars and events! This week is the RSNA annual meeting, the World Manufacturing Forum, and more. HP is holding an...