Programmable 3D Printed Wound Dressing: Improving Burn and Cancer Treatment


Share this Article

Researchers at the University of Waterloo have developed an innovative, customizable wound dressing with potential applications in burn care, cancer treatment, and the cosmetic industry. Made from intelligent hydrogel materials, the dressing promises to alleviate some significant issues in current healthcare practices, particularly for burn and cancer patients. The transformative technology results from work done by Boxin Zhao, a professor in Waterloo’s Department of Chemical Engineering, and his team at the Surface Science and Bionanomaterials Laboratory Group.

Burn patients often grapple with frequent and painful dressing changes. The newly developed wound dressing, made using advanced polymers, aims to alleviate this suffering and expedite the healing process. The team turned to 3D printing to ensure customizable dressings, allowing for precision-fitted wound dressings that cater to a patient’s specific needs.

Zhao elaborated on the unique features of the material: “The fine-tuned surface adhesion is key. The material can easily adhere to the skin and be taken off. It’s a very delicate balance within the material to make the adhesion work.”

The team turned to 3D scanning of the patient’s body parts to ensure that the dressing made good contact with different surface types. In fact, the bespoke nature of the dressing makes it particularly effective for treating burns on areas like noses and fingers.

In addition to its applications in burn care, the novel material could revolutionize cancer treatment methods. Traditional chemotherapy often needs hours in a clinic, a process that can be exhausting and uncomfortable for patients. The intelligent hydrogel dressing provides an alternative, offering a constant drug release outside a clinical setting, enhancing the patient’s comfort during treatment.

To make these intelligent dressings, the team opted for a biopolymer material derived from seaweed, a thermally responsive polymer, and cellulose nanocrystals. The thermal responsiveness of the dressing allows it to warm on the skin before gently lowering it to room temperature, enhancing its adherence properties. If cooled in a fridge, the dressing expands but shrinks to a smaller size at body temperature, making removal easier and less painful. Furthermore, the dressing is designed to provide time-release medication, extending the duration of pain relief.

A proof of concept was recently published in the Journal of Colloids and Interfacial Science by Zhao and his team at the Surface Science and Bio-nanomaterials Laboratory Group. The study titled “Multi-thermo responsive double network composite hydrogel for 3D printing medical hydrogel maskunderscores the significant progress in this domain. In conclusion, the documents state that the researchers successfully developed a new type of temperature-responsive hydrogel used to create full-sized, 3D printed medical masks capable of drug release, making it suitable for personalized wound dressing. The team used a Sonic XL 4K 3D printer by Phrozen, a Taiwanese 3D printer manufacturer, for this task.

Demonstration of high printing fidelity with the hydrogel resin, from 3D model to custom-designed facial mask. Image courtesy of Boxin Zhao/University of Waterloo.

Beyond treating burn victims and cancer patients, the potential applications of this technology extend into the beauty and cosmetics industry and even prove advantageous for plastic surgeons. According to Zhao, “cosmetologists can utilize 3D scanning technology to analyze their clients’ facial features and customize hydrogel masks infused with specific facial and skin regimen products.”

Future studies will focus on enhancing the hydrogel with antimicrobial particles and strengthening its formulation to make the material healthier and commercially viable.

Overall, the field of wound care has seen remarkable advancements through the application of 3D printing technology. In 2018, a team at the Wake Forest Institute for Regenerative Medicine pioneered a mobile skin bioprinting system that prints bi-layered skin directly onto a wound, tailoring the tissue deposition to the wound’s specific dimensions. Similarly, scientists from RMIT University in Australia crafted a method in 2019 for 3D printing a custom protective barrier, an innovative solution for treating burns, ulcers, and other severe wounds. Furthermore, a groundbreaking handheld 3D skin printer was developed in 2018 through a collaborative effort between the University of Toronto and the Sunnybrook Research Institute, depositing even layers of skin tissue to cover and heal deep wounds. These initiatives illustrate the transformative potential of 3D printing in wound care, offering patient-tailored treatments that can expedite healing and enhance patient comfort, complementing the recent achievements in programmable hydrogel development at the University of Waterloo.

Share this Article

Recent News

3D Systems Brings 3D Printed PEEK Cranial Implant to the U.S. with FDA Clearance

Relativity Space Lands $8.7M Air Force Contract for Real-time Flaw Detection in 3D Printing


3D Design

3D Printed Art

3D Printed Food

3D Printed Guns

You May Also Like

Air Force Awards Fortius Metals $1.25M to Qualify 3D Printing Wire for Hypersonic Applications

AFWERX, part of the US Air Force Research Laboratory (AFRL), awarded a Direct-to-Phase II Small Business Innovation Research (SBIR) contract worth $1.25 million to Colorado’s Fortius Metals, to accelerate qualification...

US Air Force Awards JuggerBot $4M for Large-format Hybrid 3D Printing

Large-format 3D printer manufacturer JuggerBot has received a $4 million grant to develop a large format 3D printer, courtesy of the Under Secretary of Defense, Research and Engineering Manufacturing Technology...

Where Have All AM’s Unicorns Gone?

In the rapidly evolving world of 3D printing, startups valued at over a billion dollars, known as unicorns, once seemed as fantastical as the mythical creatures themselves. While a few...


How My Childhood Fascination with Planes Led to Investing in 3D Printing

My fascination with aerospace started young, and I started studying planes–identifying them in the sky and learning everything I could about how they work.  Fast forward to my first week...