China’s SpaceX 3D Prints over 30 Parts for Rocket Engine

Formnext Germany

Share this Article

In an effort to become China’s SpaceX, Galactic Energy has raised over $188 million in its Series B round and has now commissioned service bureau Falcontech to 3D print over 30 parts for its WELKIN rocket engine.

The company has made progress toward its goal of becoming the premier launch company in the country with the CERES-1 solid propellant launch vehicle, which has been used to launch six satellites so far. It is building on this experience with the development of its Pallas liquid propellant vehicle, to be launched for the first time in 2023. The Pallas has a carrying capacity of five tons and will be designed to be reused up to 50 times. Key to the vehicle is the WELKIN 50-ton Reusable LOX and Kerosene Engine. This is a variable thrust gas generator circulating liquid rocket engine with over 40 tonnes of thrust. The company calls it the Chinese version of SpaceX´s Merlin engine.

As with almost all rocket makers, Galactic has relied heavily on metal powder bed fusion (PBF) to build the WELKIN. One interesting element of the project is that Galactic outsourced 3D printing to Falcontech, unlike Launcher, SpaceX and other U.S. New Space firms, who like to keep 3D printing in house.

The Chinese service bureau is AS9100 certified and has extensive manufacturing operations in Wuxi and other locations. It also has its own EIGA unit for making powder and has been a supplier to COMAC and other aerospace companies. Falcontech has qualified over 28 parts for COMAC´s C919 aircraft, mostly door components. In addition to boasting over 24 L-PBF machines from Farsoon, Falcontech has two huge Concept Laser X lines,10 Renishaw 500Ms, and lots of other equipment. The company is trying to build a super AM mactory with over 50 large-format metal powder bed fusion machines.

Falcontech got the order for 30 parts in 2019 and the company produced them in four months. In addition to PBF, CNC and directed energy deposition were used. The Galactic team said that thrust chamber component takes four days to 3D print, whereas it would take up to 25 days to make with traditional processes, cutting the manufacturing cycle by 80 percent. Moreover, 3D printing the engine led to a reduction in production costs. Additionally, a pump component was made that was five percent more efficient than the previous one. The engine was then assembled and tested, meeting all requirements.

It is remarkable that, in China, a firm like Galactic is content not to build up in-house AM capacity. Yes, it has design teams, but it is divorcing itself from the production. This is a good decision in terms of cost, but will slow its design cycles and may inhibit the firm’s understanding of its own engines. As we’ve heard time and time again—from Domin´s Marcus Pont, NASA´s Paul Gradl, John Barnes, and Launcher’s Tim Berry—design for additive is a team sport, with integrated groups from different specialties working together to holistically optimize material, part and process. You’re not just squeezing the topology lemon to get the most of it. You’re squeezing all constraints and trying to get any and all edge from all the disciplines working together.

On the other hand, Galactic´s approach gives them speed and lower costs. The company does not have to develop its own 3D printing expertise but can rely on that built up in Falcontech. Ultimately ,the design and print in-house approach will give them edge, but perhaps the firm just didn’t have the wherewithal to do it in house at the time. In the coming years, we will see a real separation between firms taking a deep dive in additive and those willing to outsource. In orthopedics, we can already see this. Some asset-light firms just outsource and others, such as Stryker, invest deeply in AM and understanding the process in search of edge. Competitive edge versus capital outlay is something that will be an important decision in space and other heavy users of additive in the years to come.

Share this Article

Recent News

Carbon Newest 3D Printing Elastomer Is 40% Bio-based

China’s BLT Metal 3D Printing Sales up Almost 60% YOY


3D Design

3D Printed Art

3D Printed Food

3D Printed Guns

You May Also Like

3D Printing News Unpeeled: BLT, M Holland & Tecnológico de Monterrey

BLT has announced its half year results for 2023 with $2.44 million in profit for the first half year up from a $5.34 million loss last year for the same period....

3D Printing Webinar and Event Roundup: September 24, 2023

We’ve got another eventful week coming up in the 3D printing industry! There are events and conferences in several countries, including the U.S., Canada, and Singapore, and webinars on all...

3D Printing News Briefs, September 16, 2023: Certification, Fuel Cells, Microalgae Ink, & More

In today’s 3D Printing News Briefs, we’re kicking things off with business, as former Waymo legal executive David Tressler joins 6K as its Chief Legal Officer. Moving on, MakerVerse received...

3D Printing News Unpeeled: 16 & 20 lasers & Mighty Buildings Gets $52m

Farsoon Technologies and Bright Laser Technologies (BLT) both unveiled large powder bed fusion machines. Farsoon´s FS1521M has 16 fiber lasers and a 1.5 meters by 850mm Z-axis build volume. BLT´s BLT-S800...