Why Are We 3D Printing Boat Hulls?

Inkbit

Share this Article

3D printing boat hulls may strike you as a particularly esoteric thing to do. Also, given the water tightness issues we often have with 3D printing, it may also seem like a risky thing to do. However, manufacturing boat hulls conventionally has a number of drawbacks.

A lot of pleasure craft, speed boats, and the like are made with giant molds and thermoplastic materials. A mold is filled with a polyurethane gel coat, at which point reinforcements, such as fiberglass, are added by hand. The hull cures inside the mold and is then finished. Boat manufacturing is a surprisingly labor-intensive process and uses a lot of nasty chemicals. Additionally, your hull shapes tend to be a bit limited through these processes.

Moi Composite’s 3D printed boat (above) is an exploration of what you can do if you aren’t limited by molding. For everyone not using additive technology, each boat requires an individual mold. See, just how much manual labor is being used in the below video.

These gel coat hulls can also be used for personal watercraft like jet skis. Colombian drug lords even use the same process to build semisubmersible narco subs in the jungle. Some of these subs are now reportedly trying to cross the Atlantic to Africa and Europe directly.

At the extreme high end, we have America’s Cup Yachts. It may surprise you just how artisanal that fabrication process is.

This build method is pretty much standard if you want relatively durable high speed or lightweight craft. On boats, fiberglass is usually used, but all manner of carbon fiber reinforced polymer or carbon fiber-like materials could be used as well. All types of hand layup processes could be used to make such structures, as well. Different fiber loads, matrixes, and combinations can be used for all sorts of ends. With composites being worked on for many different applications, from bikes to aircraft, now would be an exciting time to take the leading edge of composites research and introduce it to boat building to get higher performance.

At the same time, there is a quiet revolution ongoing in autonomous watercraft. Sea drones are being used to map the ocean floor, collect weather data, and find fish. Autonomous sailing craft and autonomous subsea craft are making their way around the world.

Rather than have a crew of 20 on a large vessel tow sensors around, these vehicles can do it all by their lonesome. Autonomous powered vessels are also being developed for shipping cargo and other applications.

Autonomous torpedo-like vessels and lingering mines are becoming increasingly important, as well. Imagine a carrier group being attacked by 3,000 floating unmanned sea vehicles, some on the surface and some below it. They would be overwhelmed. It took one speedboat to carry out the USS Cole bombing.

The U.S. is almighty on the sea, but automated construction of autonomous sea vehicles can negate American marine power. The U.S. has hundreds of billions tied up in its carriers and a fleet of polymer UUVs or surface vehicles could negate this force. In the Persian Gulf, Iran already routinely menaces much more sophisticated U.S. ships with its polymer gunboats.

Beset by asynchronous players who are using cheap gel coat speed boats to harass and attack it, with a burgeoning wave of autonomous technology, the U.S. simply can not remain tied to hand-building boats, making vessels with suboptimal strength slowly. At this point, it will no doubt become obvious to you what the nice people at Oak Ridge National Laboratory figured out a number of years ago the inescapable logic of the giant beast that is the Big Area Additive Manufacturing (BAAM) system. And they used it to 3D print the submersible hull below.

The resulting submarine hull meant a cost reduction of over 90%. This is a very public demonstration of what others knew before: that the boating industry can really benefit from automation in hull manufacturing to reduce costs.

But BAAM and similar processes can also be used to print the molds or masters from which to make boat molds. The same technology can additionally be deployed for wing parts and fuselage components for drones and aircraft, as well as formwork and molds for large tools for aircraft. The University of Maine’s 3Dirigo boat is, therefore, a great example of a project that could revolutionize traditional shipbuilding. At the same time, it could be used for formwork for jets, boats, and construction projects. This makes this a very effective investment for a University, but also for a state.

So, a set of very important things to industry and state security can be optimized as long as we can 3D print very large, preferably composite, parts. This can save time and costs, while perhaps saving weight or increasing performance, as well. If this process is automated, then the U.S. may be able to keep pace with sea-based loyal wingmen or by having a similar offensive capability. If the U.S. does not lead this large-scale 3D printing revolution, it could lose its edge in sea power forever and not be able to credibly invade or threaten anyone. And that’s why we’re all 3D printing boat hulls.

Share this Article


Recent News

Digital Supply Chains and 3D Printing Come to Alaska via Ivaldi

US Space Force Awards Launcher $1.7M Contract for 3D Printed Rocket Engines



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Gilmour Space Unveils 3D Printed Rocket Engine as it Readies for 2022 Launch

Australian rocket company Gilmour Space Technologies is getting one step closer to its first commercial launch in late 2022. The pioneering launch services company known for its orbital-class hybrid rocket...

Sauber Technologies Teams with EOS for Polymer 3D Printing

EOS has signed a three-year deal with Sauber Technologies, the Swiss engineering company that works with the Alfa Romeo F1 Team Orlen, formerly a Sauber sister company. While Sauber does...

EOS President of North America Discusses the Future of Metal Laser 3D Printing

EOS has been the long-established leader in laser sintering, representing the largest installed base in the market. However, as companies new and old attempt to push the segment, particularly in...

Over 200 Ursa Major 3D Printed Engines to Power Phantom Space Rockets

Designing and building rocket engines is the sole purpose of Colorado-based startup Ursa Major, and it’s getting noticed. Propulsion capabilities are crucial to widening our gateway to space, and the...