Generator and engines firm Cummins is set to commercialize its first binder jet 3D printed part. The company calls it “a significant milestone in the company’s additive manufacturing and Industry 4.0 journey.” The component was made with GE Additive’s binder jet technology, which is currently in a testing phase with a few select partners. Among them was Cummins, who deployed the tech at the Additive Manufacturing Lab at Cummins Manufacturing Engineering Development Center (MEDC) in Columbus, Indiana.
The component is a lance tip adapter for high powered diesel engines, which “atomizes and injects” exhaust fluid into the exhaust in order to cut down the nitrogen oxides emitted from the system. It is currently going through Cummins’ production part approval process for approval.
“This is the first of many milestones. The focus of our partnership is to productionize applications at cost, quality and needed scale. We are proud to work with Cummins to develop additive technology and provide meaningful return on investment throughout its supply chains,” said Jacob Brunsberg, Binder Jet product line leader at GE Additive.
The choice of an injector is an interesting one since optimized geometries could make injectors more efficient and change the wax that they discretely inject fluids in systems. When we previously discussed the concept of flow in optimizing systems through 3D printing, this was exactly this kind of a part that was considered. Not a dumb part, this relatively small item can enhance the performance of a much larger conventionally manufactured system. We don’t have to print the whole thing, just the things that matter.
In this case, the advantages included a lighter-weight geometry that enhanced fluid and airflow, while doing away with the need for cross-drillings. Once approval is achieved, Cummins aims to enter into official production this year.
Tim Millwood, Vice President of Global Manufacturing at Cummins, noted, “It signifies yet another significant milestone in our 3D and additive manufacturing roadmap. We’re on the cusp of being able to leverage a broad range of additive technologies to print the parts we need, using the right technology and at lower costs and increased speeds.”
The company hopes to perform high-volume production with binder jet. It is now working with two of GE’s second generation binder jet systems and is working on “third-generation technology.” Meanwhile, the company also ships aftermarket and small series parts using powder bed fusion and polymer technologies,
“The cost and cycle times of these machines make them well-suited for producing parts for Cummins’ aftermarket customers and those needed in low volumes. Since selling the first metal 3D-printed part in 2019, Cummins has approved 20 part numbers and shipped nearly 350 parts using their suite of additive technologies.”
I love everything about this. First off, it’s wonderful that Cummins is using powder bed fusion and other technologies for small series and aftermarket parts. I’ve been very interested in using 3D printing for aftermarket parts and to make add-on and custom projects for components, as well. To enable a customer to continue operating quickly or to provide a client with a specific, custom solution can bring a lot of value to both an OEM and its customers. Small volume, relatively small parts can really make for attractive business cases in 3D printing.
I also love that this is a concrete part coming out of a strategic partnership. I have previously griped that we had more partnerships than parts in additive. I also really love that it is a well-chosen value-adding part. This is also good news for GE, specifically for its efforts in binder jet. This is a proof point that the company is making headway in expanding the use of 3D printing in industry.
Additionally, this is exactly where I can see binder jet play a role in industry, automotive, transport, capital goods, and manufacturing. At the moment, I don’t believe in binder jet cases where a lot of new geometries are needed all of the time. With shrinkage rates differing at every wall thickness and size, and with geometry playing a hugely important role, no one has of yet figured out how to get binder jet parts to print properly the first time. So, for services and prototyping, the technology is problematic. Other claims have focussed on large binder jet parts, which can warp very easily in sintering. So, this is also a difficult one to tackle.
For series production of qualified parts however, the technology can be ideal. GE has had a lot of success with nozzles generally, so that’s good, as well. I really think that, for small optimized, qualified parts, allows for features like weight-saving and performance enhancements, for which binder jet could be ideal. If we can dial in parts and optimize their designs well for such process and outcomes, then binder jet can really play a role in rolling out these parts to industry worldwide.
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
3D Printing Webinar and Event Roundup: September 14, 2024
In this week’s roundup, Divide By Zero Technologies is having a launch event for its new 3D printer tomorrow. Stratasys continues its tour of North America, as well as its...
3DPOD 217: 3D Printing Money with Danny Piper, NewCap Partners
Danny Piper, of NewCap Partners, helps companies with mergers and acquisitions, financial analysis, and more, particularly in the additive manufacturing sector. As an analyst and sparring partner for the industry,...
Printing Money Episode 21: Q2 2024 Earnings Analysis with Troy Jensen, Cantor Fitzgerald
Like sands through the hourglass, so is the Q2 2024 earnings season. All of the publicly traded 3D printing companies have reported their financials, so it is time to welcome...
Protolabs Buys DLP-SLA Combo 3D Printer from Axtra3D
Axtra3D has sold a Lumia X1 to Protolabs, to be installed at the manufacturing service provider’s Raleigh, North Carolina location. The Lumia X1 is a high-throughput vat polymerization system that...