HeyGears

New Silicone 3D Printing Opens up Applications for Robotics, Medicine, Wearables

RAPID

Share this Article

The fabrication of soft devices is evolving further, with the completion of recent research performed by US scientists. With the results published in “3D printable tough silicone double networks,” the authors explain how soft materials can be fabricated with micron resolution for complex systems like robotics, as well as new types of wearables.

Soft materials are produced industrially for many applications, with soft matter deployed for shock absorption, conformal requirements, energy recapture and robotics, where devices must be able to deform. Cross-linked materials like silicone rubbers (more formally known as poly(dimethylsiloxanes)) are popular for use due to strong mechanical properties, and temperature and chemical resistance. Most methods for using such materials with traditional techniques like injection molding are extremely limited though, and only suitable for creating basic geometries.

Previous research has shown success with liquid silicone rubber material for 3D printing ink, yielding more complex shapes. Challenges have been noted, however, in terms of structures being printed with overhangs, as well as those with a “high aspect ratio structure,” due to lack of stability like “slumping” before curing. Other experimental techniques have resulted in a lack of resolution, inferior mechanical properties, or slower printing speed.

In this study, the researchers employed the use of a materials platform consisting of silicone double networks (SilDNs), offering low elastic moduli and strength not found in previous SLA elastomers. The printing resin was made up of two different silicones, in which one “weak, but 3D printable silicone network ensnares the precursors” for a stronger form of silicon. Not only does this result in a more mechanically robust elastomer than previously possible, but the material also bonds with a number of substrates—including thermoplastics, thermosets, ceramics and metals—opening up a new range of applications.

3D printing double network silicones (SilDNs).

“The combination of low moduli, high toughness, and high tear resistance is desirable when printing soft robotic and biomedical devices,” stated the researchers. “Unlike other materials where the 3D printing process can impart anisotropy or alter performance, SilDNs can possess similar properties regardless of print orientation or layer height. These findings suggest that the condensation network crosslinks across printed layers.”

Because soft architectures are required in applications like medical and surgical simulation, the researchers created a hollow synthetic heart model, meant to imitate an infant heart and cardiac tissue as closely as possible. The material exhibited high tear strength, which is critical as medical professionals practice injections, incisions, and doing sutures.

Mechanical properties of SilDNs.

Post-print bonding of SilDNs.

For devices like soft actuators and sensors, a good elastomer-textile bond is necessary, allowing for tear resistance, and the ability to connect to typical textiles, like stretchable fabrics. Wearables must be able to hold up under wear and tear and “donning and doffing cycles.”

Integration of SilDNs for wearable and soft robotic applications.

Ultimately, the authors recommend the SilDN framework for improving speed and mechanical properties; however, the addition of other chemicals like photo-latent catalysts could be helpful for better control of condensation. Along with that, the network could benefit from greater stiffness and strength.

“SilDNs can also be produced from other condensation networks including those with advanced functionality (e.g., self-healing behavior) to enable a device performance,” stated the researchers.

Materials were 3D printed on an Ember SLA 3D printer, using a blue-light LED projector, modified with a wiper blade assembly for better prints. They also added a dye series to refine Z-axis resolution, and then in post-printing, painted the surgical simulator with SilcPigs pigments.

Silicone is being used in a variety of research projects and applications today, from 4D stretchable fabrics to direct ink writing for metamaterials with shape memory behavior, and use in applications for creating sensors.

[Source / Images: “3D printable tough silicone double networks”]

Share this Article


Recent News

GE Aerospace’s $1B U.S. Investment & the Return of Reshoring

3D Printed Rocket Motor Specialist Ursa Major Lands $15M Satellite Propulsion Contract



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

ATLANT 3D’s Atomic-level 3D Printing Gets $15M in Series A+

After completing the hard work of developing a complete 3D printer in 2024, ATLANT 3D secured a $15M Series A+ round, following its Series A round in 2022. Both rounds were...

UltiMaker S8 3D Printer Reaches Higher Speeds and Higher Temps

In the market race to develop faster extrusion machines, desktop 3D printer manufacturer UltiMaker has released the new S8 3D printer, featuring an improved feeding system, high-flow nozzles, and the...

3D Printing News Briefs & Events Roundup: March 8, 2025

Starting this week, we’re shaking things up a little! We’ll be combining our 3D Printing News Briefs with a more curated weekly list of 3D printing webinars and events to...

Sintavia Buys AMCM Metal 3D Printer with nLight Lasers

Additive manufacturing (AM) service specialist Sintavia recently received a $10 million investment and is already putting the funds to use. The company has purchased a twin-laser AMCM M290-2, equipped with...