In the recently published ‘Drop-on-demand high-speed 3D printing of flexible milled carbon fiber/silicone composite sensors for wearable biomonitoring devices,’ authors from University of Waterloo and the University of California, Berkeley are exploring new ways to fabricate sensors for medical use. In this study, the team used high-speed material jetting (MJ) of high-viscosity conductive inks to fabricate highly flexible, sensitive sensors.
Previously, carbon materials and fillers have been popular for use in conductive sensors, including:
- Graphite
- Graphene
- Carbon black
- Carbon nanotubes
- Carbon fibers
Challenges have persisted, however, due to a lack of robustness, flexibility, and sensitivity. Traditional techniques for production also, like melt-mixing and casting have not offered enough accuracy for patient-specific treatment. And while 3D printing offers a host of miraculous benefits for most industries and applications, the technology has continued to pose obstacles—leaving the researchers here to create their new drop-on-demand material jetting (DODMJ) system with milled carbon fiber/silicone rubber (MCF/SR) ink.
The goal was to optimize printing for the ultimate in printability, curability, and electrical properties, ‘sandwiching’ MCF/SR sensors between SR layers for protection—and to create even more flexibility.
“MJ printheads eject droplets of high viscous ink with controlled volume at high frequencies. DODMJ system works at high speeds (∼100 mm/s), which is about 5 times faster than material extrusion and about 20 times faster than conventional material jetting systems [45]. Upon applying a voltage, the piezoelectric actuator is triggered and pushes the rod tappet towards the outlet, leading the ink droplets to quickly eject at high frequency,” explained the researchers. “When the voltage drops at each ejection cycle, the rod tappet is pulled back and the compressed air pushes the ink towards the orifice. The above steps are repeated during the MJ process at a high speed.”
The researchers noted that printer performance was ‘crucially affected’ by ink viscosity. Upon further investigation, they also noted that MCF/SR inks with the MCF content of up to 30 wt. % were printable; otherwise, printing failed when further MCF was added.
The researchers tested sandwiched MCF/SR sensors for viable use as wearable devices for patients, examining the results as devices were attached to fingers, performing cyclic bending. Overall, results showed that the sensors were suitable for human motion detection and other uses in healthcare due to successful reversible performance.
“Sandwiching the MCF/SR composites with protective SR layers (S-MCF/SR) resulted in a better durability in severe deformations (specifically for stretching applications), which was not feasible by the MCF/SR stand-alone composites,” concluded the researchers. “The piezoresistive response of S-MCF/SR sensors under cyclic stretching with various levels of strain amplitude was characterized showing a relative resistance change up to ∼40, where strain amplitude of 10 % was applied and the deformation mechanisms were discussed.
“The proposed sensors show favorable flexibility with elastic modulus, yields strength and the rupture strain of 224 ± 21 kPa, 302 ± 18 kPa, and 1.5 ± 0.3, respectively. Finally, the application of the S-MCF/SR sensors for detecting the human motions was addressed and the bending motion of index finger and arm was detected as showcases. DODMJ of the S-MCF/SR composites would facilitate the high-speed development of customized wearable sensors.”
Research into new sensors and wearables continues, much to the benefit of medical patients and consumers overall, with innovations such as prosthetics, devices with embedded electronics, battery storage for wearables, and more.
What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.
[Source / Images: ‘Drop-on-demand high-speed 3D printing of flexible milled carbon fiber/silicone composite sensors for wearable biomonitoring devices’]Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Tekna Introduces Coarse Titanium Powders for Faster 3D Printing
Tekna is introducing coarse Ti-64 titanium powders to the market, aimed at laser powder bed fusion (LPBF) users. These larger powders could make a significant difference. Designed for 60 μm...
QIDI Q1 Pro 3D Printer Review: A Heated Value
Disclosure: The Q1 PRO was provided to me by QIDI free of charge for the purpose of this review. I have not received any other compensation. All opinions expressed are...
3D Printing News Briefs, September 21, 2024: Process Monitoring, Earmolds, & More
We’re taking care of business first in today’s 3D Printing News Briefs, as Sevaan Group has launched an additive manufacturing service and Farsoon Europe is partnering with MostTech to expand...
Divide by Zero Releases $500 Altron 3D Printer with Advanced Features
Indian original equipment manufacturer (OEM) Divide by Zero Technologies has released its latest 3D printer, the Altron. Priced at $500, the machine features spaghetti detection, automatic calibration, nozzle height detection,...