ORNL Licenses ExOne to 3D Print Parts for Neutron Scattering

Share this Article

It is always exciting to see the work of dynamic industry players merging, as in the latest deal between The Department of Energy’s Oak Ridge National Laboratory (ORNL) and ExOne, now allowing the Pennsylvania-headquartered leader in metal 3D binder jet printing technology to use one of the lab’s new methods.

Equipped with the license to use ORNL’s novel technique for 3D printing parts for neutron instruments, ExOne has plans to fabricate a light, metal composite developed for neutron scattering. This type of exercise allows the user to collect data on atoms and structures, offering accurate measurements and definition of neutron beams overall.

“Our work on collimators has been focused on tungsten infiltrated with copper for use in X-ray machines, computed tomography, or CT, scans and magnetic resonance imaging machines, or MRIs,” said Dan Brunermer, ExOne technical fellow. “The technology we have licensed from ORNL will allow us to build collimators for neutron scattering, and that requires a specialized mix of materials and post processing.”

Both ExOne and ORNL share extensive knowledge in additive manufacturing with metal; here, ORNL researchers have created a method for binder-jet printing with boron carbide—a type of ceramic that is infused with aluminum, resulting in a B4C – Al metal matrix composite. Not surprisingly, the initial prototypes for collimators were produced on an ExOne binder jet printer on-site at the Department of Energy’s Manufacturing Demonstration Facility at ORNL. They were then tested with actual neutron scattering instruments at the ORNL Spallation Neutron Source and High Flux Isotope Reactor.

3D-printed collimators for neutron scattering. Image courtesy of ExOne.

Upon evaluation, results showed that the prototypes completed their mission in propelling neutrons into a ‘narrow trajectory,’ while also collecting others which may have strayed from the intended path—offering accurate scientific measurements.

“Machining a collimator through traditional manufacturing is quite challenging and costly,” said ORNL’s David Anderson, co-inventor and neutron scattering instrument engineer. “But they’re needed to reduce background neutron radiation at neutron scattering instruments. Most neutron scattering instruments, including those at SNS and HFIR, have them.”

ORNL’s Bianca Haberl and Amy Elliott hold 3D-printed collimators. Co-inventors of the ORNL technology include David Anderson, Corson Cramer, Amy Elliott, Garrett E. Granroth, Bianca Haberl, James O. Kiggans Jr., Anibal J. Ramirez-Cuesta, Derek H. Siddel and Matthew B. Stone.  (Photo Credit: Genevieve Martin/Oak Ridge National Laboratory, U.S. Dept. of Energy)

Employing the classic benefits of 3D printing and AM processes, ExOne hopes to manufacture new, more affordable collimators for scientists around the world studying neutron beamlines. With the bottom line significantly decreased for the production of the devices, the goal is for users to have a new, customized collimator for every experiment performed.

“When they start to see experiment-specific collimators and how they have the potential to improve their test results, we hope to see the design, order and fabrication of these devices become the norm and not the exception,” Brunermer said. “Our collaboration continues to prove its value to the manufacturing industry with the outcome of projects like these. It benefits ExOne, it benefits the customers of these collimators and it feeds money back to the American taxpayer.”

ORNL has a long and impressive list of 3D printing research projects and collaborations behind them—from a recent project in exploring coal materials to unique experimentation with 3D printed sensors, working with the Navy, and so much more. ExOne continues to advance in offering binder jetting techniques, releasing new materials to users, and even testing devices like reusable metal filters during the COVID-19 pandemic. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: Newswise]

Share this Article


Recent News

How Can HR Departments Maintain Employee Satisfaction Following the COVID-19 Crisis?

Voodoo Manufacturing Acquired, to Be Resurrected as a 3D Printing Zombie?



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Stratasys Announces First Carbon Fiber 3D Printing Filament for F123

Stratasys has introduced a new carbon fiber material for fused deposition modeling (FDM). While the company has had a carbon fiber filament available on their industrial printers for several years,...

Featured

Stratasys Doubles Down on SLA, Buys Industrial SLA 3D Printer Maker RPS

Not long after completing its acquisition of Origin last month, Stratasys (NASDAQ: SSYS) announced that it has acquired U.K.-based industrial stereolithography (SLA) printer and solutions provider RP Support Ltd. (RPS)....

3D Printing Provider Fathom Acquires Injection Molding Firm

With more than 100 large-platform industrial-grade 3D printers, as well as services including CNC machining, injection molding, and urethane casting, Fathom is one of the biggest on-demand digital manufacturing platforms...

Sandvik & Co. Acquire Dental and Medical 3D Printing Firm Proxera

My dad has a Sandvik saw blade. It’s a great tool that has lasted many years. Now, Sandvik saws are owned by Snap-On. The rest of Sandvik has grown into...


Shop

View our broad assortment of in house and third party products.