US Air Force Uses Senvol ML Software to Qualify Multi-Laser 3D Printing Systems

Share this Article

Over the last few years, Senvol, which provides data to help companies implement additive manufacturing into their workflows, has put a good deal of focus into military applications. Back in 2017, the US Air Force licensed the Senvol Database for integration into the enterprise software platform for Materials Research for the Air Force Research Laboratory (AFRL). Now, its data-driven machine learning software suite for AM, Senvol ML, will be used to help with a collaborative USAF program between the AFRL and the Air Force Life Cycle Management Center (AFLCMC), both located at Wright-Patterson Air Force Base east of Dayton, Ohio.

The University of Dayton Research Institute (UDRI), a national leader in scientific and engineering research, is the main contractor on the program, which is working to create methodology that will demonstrate airworthiness of multi-laser AM systems.

“AM has recently demonstrated the ability to rapidly deliver complex geometries and production quality parts that are able to enhance the capabilities of DoD weapons systems,” said Jessica Orr, the Program Manager and Materials Engineering Team Leader for AM & Repair Technologies at UDRI. “A major challenge facing the use of AM for producing DoD relevant end-use parts is that the number of available large scale printers is likely to be limited for the next 5-10 years. In this collaborative program we are developing and demonstrating methodology to use a new multi-laser AM printer to produce airworthy, end-use parts.”

The Senvol ML suite helps companies characterize, or qualify, AM materials and processes. This program is titled “FlexSpecs,” and will work to qualify the EOS M400-4, a four laser powder bed fusion (LPBF) 3D printing system.

EOS M400-4

“We’re thrilled to work with UDRI, AFRL, and AFLCMC on this program. Our machine learning software, Senvol ML, is well-suited to assist with AM qualification, and this is a great example of that,” stated Senvol President Annie Wang. “In addition to helping to develop baseline mechanical properties and design allowables, the software will analyze data to evaluate laser-to-laser consistency, optimize bulk scan settings, identify preferred overlap patterns and parameters, and confirm uniformity over the entire build plate.”

The collaborative partners will use Senvol ML software to help set up the characterization plan and process optimization for the FlexSpecs program, and also to analyze all of the project data.

The AFRL is in charge of discovery, development, and integration of affordable war-fighting technologies for the US air, space, and cyberspace forces, while the AFLCMC, one of six centers reporting to the Air Force Materiel Command, offers life cycle management and sustainment of all the weapon systems, from start to finish, of the USAF. Together with UDRI, these organizations will work to qualify the EOS M400-4 printer, creating design allowables and baseline mechanical properties, in addition to completing demonstration builds of heat exchangers and parts that are relevant to hypersonics.

“The overall objective of this program is to successfully demonstrate full scale M400, multi-laser prints of heat exchangers as well as hypersonics-relevant parts,” explained Dr. Mark Benedict, Materials Scientist and Program Manager in the Propulsion, Structures & Industrial Technologies Branch, Manufacturing Technology Division, Materials and Manufacturing Directorate, AFRL, Air Force Materiel Command. “This is an area of need for the Air Force, and we look forward to the results.”

According to Under Secretary of Defense for Research and Engineering Michael Griffin, the hypersonic market is the main development priority for the Pentagon, and is predicted to have sales of over $5 billion by the mid-2020s. So if additive manufacturing can be used to make qualified parts for this application, that’s excellent news for the Air Force.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

Share this Article


Recent News

3D Printing News Briefs, September 26, 2020: Nanoscribe, Azul 3D, Arburg

3D Printing Functionally Graded Materials Gets an F



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Design for Automotive to Be Supported by Lehvoss & FENA

3D printing materials provider Lehvoss North America, part of the LEHVOSS Group of chemical companies operating under parent company Lehmann&Voss&Co., announced that it is partnering up with Forward Engineering North...

TOffeeAM raises £1 million for AI Topology Optimization Tool for 3D Printing

TOffeeAM, launched from Imperial College’s Techcelerate program, recently secured £1 million in seed funding. The funding was primarily led by IQ Capital, together with Entrepreneur First, the Royal Academy of...

3D Printing Webinar & Virtual Event Roundup, June 5, 2020

In this week’s webinar and virtual event roundup, we’ve got three webinars to share with you, one of which has already taken place but can be viewed by interested parties...

MELD Manufacturing Reaches Major Milestone with Metal 3D Printed Components

Virginia-based company MELD Manufacturing Corporation was launched in the spring of 2018 as a subsidiary of Aeroprobe Corporation, which produces instruments that provide and measure real-time air and flow data. Aeroprobe...


Shop

View our broad assortment of in house and third party products.