Recycling Titanium Chips for Metal AM Could Cut CO2 Emissions by 80%

RAPID

Share this Article

During traditional CNC machining processes, most raw titanium material is wasted. For instance, in the case of machining large parts for aircraft structures results in over 90 percent material waste. Now, researchers at Leibniz Universität Hannover are experimenting with ways to recycle the titanium chips left over from machining processes via 3D printing.

A new recycling process developed by researchers from Leibniz University Hannover could reduce CO2 emissions by up to 80 percent. (Photo: Leibniz Universität Hannover)

While titanium chips may be recycled in some lower-quality applications (for example, use in composites), the leftover material is often corrupted. The researchers have already shown that impurities can be reduced by changing processing parameters in melting the material.

“During the cutting process, the titanium chips are heavily contaminated, among other things by oxidation, cooling lubricant residues and tool particles. These contaminants make recycling the chips significantly more difficult,” said project team member Jonas Matthies.

However, the team believes that further gains can be made by recycling the material directly into powder for additive manufacturing, forgoing the energy-intensive melting process. Instead, the researchers are grinding the material into a fine powder via a spraying process.

“We want to increase resource and energy efficiency by developing a manufacturing process chain for converting chip material into powder,” explains Matthies. “By using chips as input material in powder production, we expect a reduction in energy consumption and CO2 emissions by up to 80%.”

Naturally, the material is a good fit for additive manufacturing. Titanium is one of the most commonly used materials in metal AM, whether for aerospace applications, automotive parts, or designing medical implants. In this case, the researchers are focused on making aircraft components. The research is led by the Institute for Manufacturing Technology and Machine Tools (IFW), the overall goal is to overcome “deficits” in affordability, efficiency and energy usage, and conservation of resources. Four other industrial partners—engaged in the aircraft construction and recycling industries—are working on the project too.

As the researchers continue to research the AM production of parts, they are striving to find out more about ‘the targeted setting of component properties in the overarching process chain.’

“The advantage of a holistic view of the process chain lies in the knowledge of the various mechanisms of action at the various production stations . By adjusting these set screws, it is possible to manufacture components with specific material properties. “

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: konstruktions praxis]

Share this Article


Recent News

3D Printing Financials: AML3D and Titomic Bet Big on U.S. Growth

Sintavia Buys AMCM Metal 3D Printer with nLight Lasers



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

Nikon’s AM Expansion from California to Japan and Beyond: CEO Hamid Zarringhalam Weighs in

As we recently argued in a 3DPrint.com PRO article, Nikon Advanced Manufacturing has quickly gone from a prominent player in the metal additive manufacturing (AM) sector to become one of,...

The State of the Talent and Job Market in AM: 2025 Outlook

The additive manufacturing industry has seen significant shifts in recent years, with 2024 marking a critical turning point. Economic pressures, evolving hiring trends, and an increasing talent shortage at the...

SWISSto12 to 3D Print Antennas for SES’s Medium Earth Orbit Satellite Constellation

SWISSto12 has made a remarkable journey in satellite manufacturing. The company now produces its own HummingSat, as well as 3D-printed filters, waveguides, and other RF components. Recently, it was selected...

3DPOD 243: Volumetric 3D Printing with Xolo CCO, Stephan Kuehr

Stephan Kuehr began his career at 3YOURMIND before joining the volumetric 3D printing firm Xolo. In this episode of the 3DPOD, we discuss Xolo, its technology, volumetric 3D printing, bioprinting,...