Researchers from Australia and China continue the recent trend for exploring the uses of 3D printing and bioprinting for tissue regeneration and wound healing, reviewing the latest research and techniques in ‘Advances in the Research of Bioinks Based on Natural Collagen, Polysaccharide and Their Derivatives for Skin 3D Bioprinting.’
Once damaged, the epidermis can become fragile and must be healed as quickly as possible—especially for older patients. Acting as protection for the whole body, the skin is actually considered an organ, and the largest of them all. While a simple scrape or mild burn may heal quickly, more severe injuries can be fatal, with the authors pointing out in their review that around 300,000 people die each year due to burns—with millions of others suffering through varying levels of treatment. After serious trauma to the skin, many treatments today include:
- Autografts
- Allografts
- Skin substitute
- Cell therapy
- Cytokine therapy
These treatments are often not enough, however, and may result in extended healing time, cost-prohibitive treatment, and other secondary injury. Bioprinting, however, offers positive results in tissue engineering, and especially as vast research continues in countless areas today such as seeding fibroblasts, fabricating scaffolds for assisting in bone regeneration, and investigating a variety of materials for hydrogels. In this review, the authors delved further into specific types of bioink most suitable for skin repair.
“Selecting the appropriate bioink is important as it will influence the overall structure and cellular responses,” explained the authors in the introduction to their paper.
“Specifically, collagen hydrogel is commonly utilized for skin repair, because collagen is the most abundant protein-based natural polymer in skin tissue and is a main component of the native extracellular matrix (ECM), which means it is capable of providing a favorable microenvironment.”
In creating bioinks, biomaterials such as collagen are usually bolstered with blends and composites in an effort to replicate human skin. The challenge is in mimicking:
- Native anatomy
- Physiology of skin
- Surrounding tissue
3D printed skin can be applied to the wound itself or cultured for transplantation later.
Researchers employ a variety of different techniques, including:- Inkjet bioprinting
- Laser bioprinting
- Extrusion bioprinting
- Stereolithography bioprinting
- Microfluidic bioprinting
In most bioprinting, researchers seek printability, biocompatibility and lack of toxicity, good cell adhesion, and suitable mechanical properties. Collagen is often used due to its similarity to skin; however, mechanical strength and cell adhesion are often inferior, leaving researchers to employ additives.
Other materials are often used too, such as:
- Gelatin
- Alginate
- Fibrin
- Hyaluronic acid
- Chitosan
- Pectin
As the bioink must imitate the ECM as much as possible, researchers must often adjust it for better sustainability of cells.
The use of polymers for blending continues to garner the interest of scientists as they are able to match human skin better in some cases. Crosslinking is important too for stability of the structure, with acellular and cell-encapsulating bioinks ‘playing a critical role.’“Despite advancements with the use of skin cells (keratinocytes, fibroblasts and melanocytes) and multipotent stem cells (ADSCs, MSCs) in bioprinting of skin tissue constructs, the use of induced pluripotent stem cells (iPSCs) may provide more opportunities in skin bioprinting” concluded the researchers. “Moreover, advancements in skin bioprinting may also come with the co-culturing of various cells that are usually found in the skin layers and related tissues including keratinocytes, fibroblasts, pericytes, neural cells and ligament cells.
“In the future, it is critical to engineer fully functional skin by bioprinting structures that closely mimic the native anatomy and physiology of skin and surrounding tissue.”
What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.
[Source / Images: ‘Advances in the Research of Bioinks Based on Natural Collagen, Polysaccharide and Their Derivatives for Skin 3D Bioprinting’]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Lockheed Martin Adds 16,000 Square Feet of 3D Printing to Texas Facility
Defense giant Lockheed Martin has unveiled a substantial increase in its additive manufacturing (AM) capabilities with an expansion of its facility in Grand Prairie, Texas. The addition includes some 16,000...
EOS Launches New P3 NEXT SLS 3D Printer at Formnext 2004
EOS, the German-US leader in additive manufacturing (AM) solutions, has launched the P3 NEXT selective laser sintering (SLS) printer at Formnext 2024 in Frankfurt, Germany (November 19-22). EOS created the...
3D Printing Webinar and Event Roundup: November 10, 2024
We’ve got another busy week ahead of webinars and events around the world! There are multiple open houses and conferences, advanced AM training, a 3D printer launch event, our own...
Dinsmore Gains Ability to 3D Print Functional Stents Thanks to Axtra3D
As essentially everyone familiar with additive manufacturing (AM) knows, one of the greatest advantages of 3D printing technologies is the potential to produce parts with complex geometries that are unachievable...