Tissue Engineering for Bone Regeneration: 3D Printing of Piezoelectric Barium Titanate-Hydroxyapatite Scaffolds
German researchers continue in the quest to improve processes in bioprinting and bone regeneration, sharing their recent study in ‘3D Printing of Piezoelectric Barium Titanate-Hydroxyapatite Scaffolds with Interconnected Porosity for Bone Tissue Engineering.’
Challenges seem to be synonymous with bone regeneration, one of the most serious obstacles for surgeons today attempting to treat patients requiring enhanced bone remodeling, repair, and growth. Tissue engineering is an extremely complex science, not only requiring enormous effort to keep cells alive and viable but also in finding suitable materials that offer the potential for repair strategies—and are biocompatible.
Other properties required for functioning bone grafts and compatibility include:
- Scaffold design
- Surface topology
- Chemistry
- Porosity
“In particular, the porosity of biomaterials plays an essential role in the context of osteointegration and osteoconduction and supports the migration of cells, capillary ingrowth and the transport of nutrients to cells. Functional bioinspired designs can be produced by utilizing advanced manufacturing techniques, such as electrospinning, freeze casting, sol-gel-techniques or additive manufacturing,” stated the authors.
“In particular, additive manufacturing, such as binder jetting, selective laser sintering or extrusion-based techniques became increasingly attractive based on their broad versatility and the ability to fabricate freely designed and patient-specific geometries.”
Conductive materials, and more specifically—materials like piezoelectric ceramics—are in a unique class of their own, and becoming increasingly popular in accompanying 3D printing technology due to their potential for transforming in shape, use with a variety of materials and techniques like bioprinting, and the ability to offer an electric response.
The authors point out that with additive manufacturing processes, they have the new capacity to make complex geometries with ‘enhanced osteogenic properties.’ 3D printed implants are customized, patient-specific, and can offer biocompatibility as well as stimulation due to the piezoelectric effect.
In this study, BaTiO3 powder was used for fabrication of scaffolds, with a particle size of d50 of <3 µm. Spray-dried hydroxyapatite powder with a grain size of d50 of ~40 µm was combined to create a BaTiO3/HA powder blend. Polyethylenmethacrylate was also added for greater stability in the scaffolding after 3D printing of the samples on a Voxeljet VX500.
The researchers then imbued the scaffolds with piezoelectric properties via a polarization formula comprised of electrodes connected to a high voltage power supply. Different settings were used:
“To find the best polarization parameters, the field strength, polarization time and polarization temperature were altered in 4 steps starting from 0.667 kV/mm to 1.25 kV/mm. The piezoelectric constant d33 of different polarized scaffolds (n = 5 samples for each group, full cylinder) was measured with the Berlincourt method using a d33 piezometer (PM300, PIEZOTEST, Singapore).”
Many pores were present in the 100–200 µm range, offering favorable conditions for osteogenesis; however, the research team noted ‘very limited capability’ in terms of holding up under mechanical forces. The high porosity—and resulting brittleness—also made it difficult to attain necessary data.
“The compressive strength of 3D printed BaTiO3/HA scaffolds varied in a range of 50–370 kPa, resulting in an average compressive strength of 150 ± 120 kPa. Overall, the scaffolds were easy to manage and survived any transport and treatment,” concluded the researchers. “Nevertheless, a future aim for research is increasing the mechanical properties significantly by changing the sintering treatment or composition.
“The addition of further bioactive phases to the ceramic powder mixture will be investigated to tailor the bioactivity of the scaffolds and to potentially allow tailoring of the interface of BaTiO3/HA/X scaffolds to achieve increased mechanical performance. We show that the additive manufacturing of lead-free piezoelectric BaTiO3-based ceramics represents a promising approach to yield scaffolds of designed porosity, equipped with piezoelectric properties for enhanced bone regeneration.”
What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com
[Source / Images: ‘3D Printing of Piezoelectric Barium Titanate-Hydroxyapatite Scaffolds with Interconnected Porosity for Bone Tissue Engineering’]Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Protolabs Buys DLP-SLA Combo 3D Printer from Axtra3D
Axtra3D has sold a Lumia X1 to Protolabs, to be installed at the manufacturing service provider’s Raleigh, North Carolina location. The Lumia X1 is a high-throughput vat polymerization system that...
3D Printing News Unpeeled: Custom Cycling Shoes and Microwave Curing
Lawrence Livermore National Laboratory (LLNL) has developed Microwave Volumetric Additive Manufacturing (MVAM), which uses microwaves to cure 3D printed parts. In a paper they explain that a multi-physics model let...
3D Printing News Unpeeled: Filtering PFAS, Solid Knitting & Holographic Direct Sound Printing
A Carnegie Melon University (CMU) researcher has been working on solid knitting for over a decade. Yuichi Hirose has now made a new solid knitting machine that he hopes will...
An Intertwined Future: 3D Printing Nanocellulose
Nanocellulose is an exciting new group of materials that could be widely used in manufacturing. Nanocellulose, also called nano cellulose, cellulose nanofibers (CNF), cellulose nanocrystal (CNC), and microfibrillated cellulose (MFC),...