Karthik Vaidyalingam Arumugam recently presented a thesis, ‘Effect of Process Parameters on Contour Properties in Inconel 718 Structures Fabricated by Electron Beam Melting’ to Linköping University, expanding further on additive manufacturing with metal.
Nickel alloy Inconel 718 was used to create samples for analysis, as researchers examined the effects of process parameters on contour properties in Inconel 718 (IN718) structures fabricated via EBM. Inconel 718 offers a higher Fe, Mo and Nb content with lower Ti and Al wt% than other Ni-based alloys, offering better strength, corrosion resistance, good weldability, and crack resistance.
The EBM process encompasses a variety of build parameters that can be optimized regarding features like the following:
- Beam current
- Speed
- Focus offset
- Scan sequence
- Build temperature
Variations allow for better control parameters like melt pool size, depth of powder melting, and more.
Powder is critical to the quality of a part, beginning with characteristics like:
- Size distribution
- Chemical composition
- Morphology
- Flowability
- Density
“These characteristics result in a mixture of measures based on both theoretical and empirical-based methods,” stated the researchers. “It is essential for the powder to have good flowability, as it directly affects the density of the part. A large powder size density (PSD) will lead to poor flowability and a small PSD will lead to poor packing density.”
Samples for the study were 3D printed at University West on an Arcam A2X EBM machine. Three build parameters were varied during the project, including voltage, focus offset, and speed in printing.
Thirty-four samples were created overall. Two samples were fabricated with standard parameters and 5mm thickness. The others were 3D printed using 16 different build parameters, with thicknesses varying from 3mm to 5mm. Samples were cut along the build direction, and at mid-width of the tensile bar at an offset of 1-2mm.
“A moderate cutting rate was utilized, and adequate coolant was provided to ensure the samples did not overheat and to maintain a straight cutting line,” explained the researchers.
After hot mounting and grinding of any sharp edges, samples were polished and then hardness tests were performed, with microstructural investigation following.
“The presence of large lack of fusions and surface defects may have significantly affected the hardness values in case of some samples. Placement of the hardness indents at locations near pores could have resulted in reading that were not exactly accurate. While a series of indents were made to determine the average hardness, it could still prove to be only near optimal readings and not exact. The possible effects of γ” in the microstructure cannot be determined by the experiments carried out in this thesis. This is due to the limitations of the scanning electron microscope,” concluded the researchers.
“Finally, the nature and formation of the grain sizes have been compared for various process parameter. The pictures of grain structure obtained from the light optical microscope for each sample may vary due to factors such as quality of surface finish, etching parameters such as voltage and duration and lastly the light optical microscope parameters. The magnification and quality of images could have affected the comparison and study of the grain structures during the project. While care was taken to avoid all sources of errors, it is not possible to completely remove them.
Researchers today are involved in a wide variety of projects involving electron beam melting processes (EBM) for use with materials like tungsten, in applications like orthopedics, and in relation to biocompatibility. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.
[Source / Images: ‘Effect of Process Parameters on Contour Properties in Inconel 718 Structures Fabricated by Electron Beam Melting’]Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
3D Printing News Unpeeled: ORNL To Make 46 Tonne 410 Steel Additive Part
EOS is to make its M 290 in Pflugerville, Texas as well as in the US starting in Q1 2025. This is in response to a successful US government policy...
EOS Expands U.S. Production with EOS M 290 Metal 3D Printer
German powder bed fusion (PBF) leader EOS has unveiled plans to expand its assembly of the popular EOS M 290 metal 3D printer at its Pflugerville, Texas facility, near Austin....
3DPOD 216: Glynn Fletcher, EOS North America President
Glynn Fletcher is the President of EOS North America. Transitioning from the machine tool world to 3D printing has given him a unique perspective compared to many others in our...
3D Printing Webinar and Event Roundup: August 31, 2024
For the last webinar and event roundup of the summer, we have a variety of in-person and virtual options for you this week! There will be a Markforged FX20 demonstration...