International researchers continue to explore and refine 3D printing within architecture and progressive techniques regarding extrusion of cement, releasing their findings in the recently published ‘Concrete Choreography Prefabrication of 3D Printed Columns’ after an 18-month project.
The Concrete Choreography project is comprised of nine prefabricated concrete columns—meant to be a focal point of the Riom, Switzerland Origen Festival of Culture for the summer season—and centers around 3D concrete printing (3DCP). The project team integrated not only technology development but also computational design and robotics, meant to ‘reframe the challenge’ of digital fabrication on the large scale in high resolution.
With the project group exploring features for a new concrete typology, the columns represent the culmination of a studio course brief for the Master of Advanced Studies in Architecture and Digital Fabrication at ETH Zurich (ETHZ):
“Framing the latest research in 3DCP within the context of the performing arts, the project liberated design thinking from conventional concreting techniques and fostered a holistic approach to the conception and realization of a novel, multi-layered material system,” explained the researchers in their paper.
Along with construction of the columns, the group was on a mission to demonstrate the advantages offered to the architectural field via 3D printing, as well as showing ‘concrete’ evidence of one of the greatest benefits: the ability to create products or structures not previously possible with traditional methods. While recognizing the benefits of on-demand materially efficient printing, they also aimed to present:
- High production speed
- Fine print resolution
- Process stability
- Robust structure
“Another objective was to investigate the extrusion layer as a design instrument for high-resolution and multi-scalar material articulation. The column typology fulfilled the geometric criteria to test the fast, vertical build-up rate of the fabrication method, demonstrating the targeted qualities along significant element heights,” said the researchers.
More importantly—and touching on an issue most users have a vested interest in—the project team decided to take on the challenge of offering architectural innovation via 3D printing without any post processing. They also remained concerned about their ecological footprint while working; with 3D printing, however—and especially with materials like concrete—there is the opportunity to use less resources, along with minimizing the need for design space, and labor.
While the use of 3D printing in concrete has generated a flurry of industrial excitement regarding 3D printed homes—to include entire villages, low-cost housing, and offices, the project team’s mindset in this project was to continue encouraging freeform concepts and innovative ‘geometric exploration.’
“Although the many economic and environmental benefits of 3DCP inevitably lead to its quick adoption in industry, the process can achieve much more than simply inheriting the approaches and aesthetics of conventional concreting,” stated the project team members.
For this experiment, the mortar offered low-yield stress, along with limiting the overhang capacity, leaving very little opportunity for collapse in structures.

Overhang capacity: print tests show the maximum overhangs for good quality printing between [-20; 20] degrees Photo: Axel Crettenand.

Details: (a), (b), (d), (f) material ornament – print-path distortion using trigonometric functions; (b), (d) macro-porosity; (c) seam resulted from self-intersecting print-path; (a), (d), (f) gradual overhangs. Photo: Sofia Michopoulou.
“The shift in perception of concrete as an inert material and passive recipient of form – through formwork – towards directly organizing the material into the final artefact allows for an unprecedented geometric richness and material articulation,” said the project team.
“To conclude, the presented project not only proves transformative from an ecological and economical perspective but demonstrates that a design-oriented approach to concrete printing research can yield spectacular results that challenge building convention. This approach is necessary to realize the full architectural potential of 3DCP in its adoption to industry.”
What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.
[Source / Images: ‘Concrete Choreography Prefabrication of 3D Printed Columns’]Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
Print Services
Upload your 3D Models and get them printed quickly and efficiently.
You May Also Like
3D Systems Helps NASA, Penn State, and ASU Take the Heat Off Space Missions
As space missions get more ambitious, keeping equipment safe from extreme heat and cold is becoming a big challenge. That’s where 3D printing steps in, and 3D Systems (NYSE: DDD)...
Additive Manufacturing in the Small Arms Silencers Market – Eight Years Later
In 2017, AM Research (then known as SmarTech Publishing) published what probably seemed like an odd research note to the AM industry at the time – an opportunity brief and opinion...
Nikon Advanced Manufacturing & America Makes to Develop Aluminum Powder Dataset
Nikon Advanced Manufacturing Inc. (NAMI), the Long Beach-based end-to-end metal additive manufacturing (AM) firm, has announced that the company is partnering with the Manufacturing USA Institute America Makes to develop...
Metal Powder Supplier Elementum 3D Added to $46B Air Force Contract
Elementum 3D, a Colorado-based developer and supplier of metal powders used in additive manufacturing (AM), announced that the company has been added to the vendors list in the fourth on-ramp...