International researchers have recently developed a method for capturing blood cells to isolate tumors, using a novel liquid biopsy device that functions as a 3D printed cell trap.
This technique is being used in research for cancer treatment as an improved way to target cancer cells, which can be difficult to find (and often to allow for a diagnosis)—as well as monitoring for the further spreading of cancer cells if they metastasize.
To put it into perspective, it is important to understand that the few cancer cells being sought could be hidden in billions of other blood cells. The 3D printed trap finds these cells as white blood cells are kept in, and red blood cells are filtered back out. While previous methods have been used, in most cases they lack efficiency and damage cells in the trap.
“Capturing these tumor cells is in itself a big challenge,” says researcher Fatih Sarioglu. “Because there are billions of blood cells, you need an engineering tool, a technology that can screen the cells one by one. You cannot miss even one cell. Typical lab techniques don’t work.
“The other problem is that cancer cells constantly mutate, so you can’t rely on one type of marker to distinguish them from the other cells, even from blood cells, and they can sometimes hide very efficiently between the blood cells.”
Made up of 32 microfluidic layers, the cell trap measures 100 mm x 20.5 mm x 19.2 mm and is fully detailed in the recently published ‘Hybrid negative enrichment of circulating tumor cells from whole blood in a 3D-printed monolithic device’, featuring Chia-Heng Chu as the lead author.
The device functions with two different sections: a multi-layered immunoaffinity-based leukocyte capture section and a filtration section, with the design created in SolidWorks and then 3D printed on a ProJet 3510 HD 3D printer with VisiJet® M3-X plastic material. Device size was restricted due to the size of the centrifugation tube required for dewaxing.
3D printing allowed for the more streamlined fabrication of the device, especially due to the potential for a larger surface area; however, the technology also presented a major issue in the need to eliminate the solid wax used as a necessary ‘sacrificial filler.’
“We tried a bunch of different ways using traditional medical tools in bio labs and ended up with a standard centrifuge that removes the hard wax by heating the trap and spinning it to extract the then liquid wax from the channels,” said Sarioglu. “That was a manufacturing challenge that we had to work on.”
Simulated samples were created as they ‘spiked’ tumor cells into whole blood, mainly culturing Ovarian cancer cell line HeyA8, human breast cancer cell line MDA-MB-231 (ATCC® HTB-26™) and prostate cancer cell line LNCaP (ATCC® CRL-1740™).
Post-filtration of the ‘leuko-depleted blood’ made it possible for the researchers to maintain all the nucleated cells—even leftover WBCs that were on the detachable membrane filter. Overall, the team sees the potential for further advancement and even better performance in their scalable technique.
“This is what I am living for in a way: You spend time to think of something, work hard to realize it, and at the end you see it working with the idea that it will help people,” said Sarioglu. “That’s why I made the transition from just building sensitive tools and engineering devices to things that can help people and impact their lives.”
A variety of 3D printing devices are being used these days for diagnostics and treatment of cancer, along with training devices like 3D printed phantoms. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.
[Source / Images: ‘Capturing Blood Cells to Isolate Tumor Cells’; Hybrid negative enrichment of circulating tumor cells from whole blood in a 3D-printed monolithic device’]Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
3D Printing Webinar and Event Roundup: September 14, 2024
In this week’s roundup, Divide By Zero Technologies is having a launch event for its new 3D printer tomorrow. Stratasys continues its tour of North America, as well as its...
3DPOD 217: 3D Printing Money with Danny Piper, NewCap Partners
Danny Piper, of NewCap Partners, helps companies with mergers and acquisitions, financial analysis, and more, particularly in the additive manufacturing sector. As an analyst and sparring partner for the industry,...
Printing Money Episode 21: Q2 2024 Earnings Analysis with Troy Jensen, Cantor Fitzgerald
Like sands through the hourglass, so is the Q2 2024 earnings season. All of the publicly traded 3D printing companies have reported their financials, so it is time to welcome...
Protolabs Buys DLP-SLA Combo 3D Printer from Axtra3D
Axtra3D has sold a Lumia X1 to Protolabs, to be installed at the manufacturing service provider’s Raleigh, North Carolina location. The Lumia X1 is a high-throughput vat polymerization system that...