Vietnamese-German University: Testing the Influence of Infill Pattern & Layer Thickness on PLA

Share this Article

Researchers Ei Cho and Thanh Tran, of Vietnamese-German University, explore the continually expanding science of 3D printing materials and how they are affected by material properties. In this study, the authors experiment with poly-lactic acid (PLA), outlining their findings in the recently published ‘Investigation on Influence of Infill Pattern and Layer Thickness on Mechanical Strength of PLA Material in 3D Printing Technology.’

While there has been plenty of research previously regarding mechanical properties and a reliance on shape, parameters, design, and layer thickness, in this study, the researchers are focusing specifically on PLA and the effects of layer thickness and infill pattern on part strength, stiffness, and ductility—whether in coupled or interactive instances.

Testing nine samples overall, the researchers used the Taguchi Method to examine infill and layer thicknesses, using the Minitab tool. Weka software was used as they researched suitable solutions, along with Annova (statistical support) and MATLAB tools (optimization).

The specimens for this project have two shoulders with a section in between:

“The shoulders are large so they can be readily gripped and the distance between two gripped shoulders are 65 mm, whereas the gauge section has a smaller cross-section with the length of 25 mm so that the deformation and failure can occur in this area,” explained the researchers.

In discussing materials overall, the researchers point out that while there is a wide range to choose from, ABS and PLA are still extremely popular as they generally offer users the opportunity to print parts that with accuracy and good surface finish; here, however, they chose PLA to avoid any of the more typical issues with ABS such as deviation, and features that are not as well-defined, such as corners.

ABS and PLA material properties comparison

“Overall, PLA is great for experimentation and is just another reason for its material properties to use in our FDM process,” explained the researchers.

Samples were designed using NX 10 and Cura, and then printed using the Builder 3D printers at the GPEM lab.

Tension Testing Machine in GPEM Lab

Overall, testing showed that layer thickness plays a much greater role than infill pattern in terms of influence. Higher layer thickness resulted in better mechanical strength, with triangle infill patterns also offering the greatest strength.

“However, the influence of infill patterns is not significant according to the Taguchi and coefficients from regression function,” stated the researchers. “According to the validation from simulations, the value of optimized parameters and resulted force can be determined as reliable results. The other effects of printing such as machine condition, ambient temperature, skill of temperature, amount of glue applied and so on affected the results.

“For the future work, the other types of pattern should be analyzed not only in term of mechanical properties but also in term of cost, material consumption, surface finish and environmental aspects. Moreover, new types of pattern which are more sustainable than current patterns can be created based on the previous studies. Furthermore, the number of experiments should be increased to get more accurate data and results.”

Because mechanical properties can have such a bearing on the outcome of work for 3D printing users, research continues in labs across the world experimenting with mechanical properties and color, shape memory polymers, in production of medical devices, and so much more.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: ‘Investigation on Influence of Infill Pattern and Layer Thickness on Mechanical Strength of PLA Material in 3D Printing Technology’]

Share this Article


Recent News

Markforged SPAC: Metal 3D Printing Enters New Era

Push Button Metal: The Low-Cost Metal 3D Printing Evolution We’re Not Talking About



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Phillips Corporation Becomes Markforged 3D Printer Distributor

On the heels of the big news of its upcoming merger and IPO, Markforged has announced that Phillips Corporation will be adding the startup’s 3D printing technology to its portfolio...

New 3D Printing Industry Leaders Join AMGTA

The Additive Manufacturer Green Trade Association (AMGTA) welcomed eight new member organizations adding to its list of 12 additive manufacturing (AM) companies aligned with the organization’s commitment to promoting the...

Featured

3D Printing Startup Markforged to Go Public via SPAC Merger

Markforged, a leader in industrial 3D printing, prepares to go public after a merger deal with blank-check company one (NYSE: AONE), a $200 million special purpose acquisition company (SPAC) backed...

3D Printing Webinar and Virtual Event Roundup: February 21, 2021

This coming week is chock full of webinars, with three a day for three days running. So without further ado, let’s dive right in! TriMech on Sweeps and Threads in...


Shop

View our broad assortment of in house and third party products.