Tennessee researchers have come together to pursue a more in-depth look at the science of 3D printing with metal, outlining their findings in the recently published ‘Dimensional Analysis of Metal Powder Infused Filament – Low Cost Metal 3D Printing.’
While fused filament fabrication (FFF) is one of the most standardized, and popular, forms of 3D printing today, there are still myriad challenges for users, depending on a range of projects and their respective requirements. In this study, the researchers added a unique twist by adding a small amount of PLA to metal powder, creating a composite that is still 90 percent metal, contributing to the process presented by the researchers: metal FFF (MFFF).
In using MFFF, metal-polymer composite parts can be created—while afterward sintered (heated to near melting) to remove the polymers, resulting in all-metal, and notably, creating the potential for ‘superior part complexity.’
The filament used in this study, referred to as MPLA (metal powder polymer composite material) offers superior composition, presenting a material that can be used with very little alteration to normal parameters for printing with the base matrix polymer.
“The settings that need to be modified are 100% infill, a decrease in printing speed (around 20 mm/s), and an increase in material flow (around 110%). Printing parameters can be further tuned with settings such as retraction and fan speed; however, the three aforementioned settings have the most influence on the printability of MPLA,” explain the researchers.
The post-printing process involves high temperatures, requiring a kiln to complete the all-metal part, including:
- Crucible – suspends the specimen and refractory ballast
- Refractory ballast
- Furnace capable of 1200 C
Post-processing with metal 3D printing can be complex as industrial users must then eliminate traces of oxidation, plus any sources of contamination; in studying metal composites made up of a copper/polymer combination for this project, the researchers noted that in post-processing, copper oxide was not included. They also refer to past research noting that 3D printing with metal commonly produces defects resulting in ‘a loss of stress that the fabricated parts can withstand.’ Such processes require expense and added hours though.
“The current techniques that are able to utilize FFF technology for fabricating metal parts is indirect metal fabrication,” explain the researchers. “Through the process of casting, patterns and sand-formed parts can be indirectly formed using 3D printed parts that are used to generate a mold. These techniques encompass all of the expenses and safety requirements associated with casting to fabricate parts.”
The most common metal 3D printing techniques include SLM and DMD, along with the use of other composites created with nylon, ABS, and more.
“With a minimum dimensional loss of approximately 5%, the printing and sintering procedures could be tuned to acceptable levels for a specific application. These results solidify MFFF as a possible method of M3DP for future industrial and academic applications. Further work will examine the mechanical and microstructural properties to better account for the expected behavior of MFFF fabricated parts.”
3D printing in metal continues to expand for users, mainly within heavy industrial use, and the study of composites continues too, from carbon fibers to the use of wood, the creation of a variety of nanocomposites, and more. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.
[Source / Images: ‘Dimensional Analysis of Metal Powder Infused Filament – Low Cost Metal 3D Printing’]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Additive Manufacturing’s Opportunity: The Agile Solution to the US Manufacturing Crunch
The US manufacturing sector is bracing for what could be a perfect storm of supply shortages and surging demand. This ‘storm’, driven by reshoring efforts, potential tariffs, and ongoing manufacturing...
The Potential for “Stick-on” 3D Printing
“Stick-on” 3D printing involves joining different 3D-printed components into a single assembly. This is a growing but still niche trend that remains largely unexplored. A significant challenge is that examples...
3D Printing and Dentistry: 2024’s Progress, 2025’s Promise
Few industries have embraced technology as naturally as dentistry did with 3D printing. From faster workflows to new materials, additive manufacturing has cemented itself as a cornerstone of modern dental...
3D Printing Predictions for 2025: Industrial Production
The prevalence of 3D printing in manufacturing and industrial component production is steadily increasing. Significant strides are being made in producing end-use parts and advancing into full-scale manufacturing. Industries are...