Exploring & Strengthening Wood Composites for Better Layer Adhesion & Versatility
In ‘Additive Manufacturing of Wood-based Materials for Composite Applications,’ authors Douglas J. Gardner and Lu Wang explore the use of wood composites, including additives such as sawdust, wood flour, lignin, and cellulose. Like composites used in many other industries, the idea behind such creations is to strengthen the initial component for greater versatility in production.
Additive manufacturing usually employed with wood compositions uses extruders, granular material bonding, and liquid deposition modeling.
Woods used in such experimentation so far include softwood, hardwood, and recycled wood, with particle sizes varying from 14 microns to 2000 microns. Common polymer types previously examined include:
- Poly-lactic acid (PLA)
- Polypropylene (PP)
- Styrene maleic anhydride (SMA) copolymer
- Polyvinyl acetate (PVAc)
- Urea-formaldehyde (UF)
- Carbohydrates (starch and methyl cellulose)

Large scale 3D printed boat roof tooling mold made from 20 wt.% wood flour and 1 wt.% CNF in a PLAmatrix [24].
“The strength properties of a printed part along the fiber’s transverse direction is often weaker than in the longitudinal direction. To improve the interlayer bond strength, fibers will need enhanced transverse strength,” stated the researchers.
The proper amount of nanofibers, combined with suitable ‘transverse integrity’ can decrease crystallinity in the matrix, allowing polymer chains near the interfacial area greater reinforcement—strengthening 3D printed layers.
“There are several disadvantages in adding fibers to polymers in 3D printing. For filament-based printers, the filament can remain flexible enough for spooling only to a certain fiber content for a given polymer. For example, a 20 wt.% fiber content was found to prevent a wood-iPP filament from properly spooling because of filament brittleness,” concluded the researchers. “Another issue related to fiber addition is the formation of porous structures inside printed beads/parts.
“Challenges in additive manufacturing with wood-based materials include processing issues during extrusion and part production, especially regarding part dimensional stability and material brittleness depending on wood component loading level as well as impacts on polymer crystallization behavior during processing. Opportunities exist for producing lighter weight and lower cost composite parts for applications in mold tooling and automobile parts.”
3D printed composites are being used more commonly today as users can more clearly define what they require when fabricating parts and prototypes. Many different composites are used to strengthen existing materials from end-of-life glass fiber composites to sintering thermoset composites, polymer nanocomposites, and more.
What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.
[Source / Images: ‘Additive Manufacturing of Wood-based Materials for Composite Applications’]You May Also Like
Metal 3D Printing Research: Using the Discrete Element Method to Study Powder Spreading
In the recently published ‘A DEM study of powder spreading in additive layer manufacturing,’ authors Yahia M. Fouda and Andrew E. Bayly performed discrete element method simulations to study additive manufacturing applications using titanium alloy (Ti6AlV4)...
thyssenkrupp Collaborating with Impact Labs on New Israeli Metal 3D Printing Center
German company thyssenkrupp is a diversified industrial group, supplying reliable solutions, services, and products to its many global customers in a wide variety of industries: from automotive, chemicals, and construction...
TIGER & Impossible Objects: Creating Thermoset-Based Composites
Based in Wels, Austria, TIGER has offices around the world, to include North America, Europe, and Asia. Originally founded as a paint shop in the 1930s, the TIGER business has...
Xometry Acquires Shift, Continues Western European Expansion of 3D Printing Services
Xometry, a Maryland-based company offering a network of manufacturing choices to its customers, has now announced the acquisition of Shift, based in Munich, Germany. Already involved in a partner network...
Services & Data
Upload your 3D Models and get them printed quickly and efficiently.