In the recently published, ‘Impact Optimization of 3D Printed Poly(methyl methacrylate) for Cranial Implants,’ Sandra Petersmann, Martin Spoerk, Philipp Huber, Margit Lang, Gerald Pinter, and Florian Arbeite explore FFF 3D printing for medical implants, with a focus on impact behavior and examining the effects of infill density and pattern on 3D‐printed poly(methyl methacrylate) (PMMA).
While 3D printing is helping researchers make huge strides in the medical field, there are still many challenges to be found in the fabrication of implants. One of the greatest—and understandable—challenges is that implants must be similar to the natural human structure and pulling that off is no easy feat. For cranial implants, the following characteristics are required:
- Inertness
- Biocompatibility
- Sterilizability
- Long-time stability
- Strength
- Durability
- Intraoperative workability
Researchers have focused heavily on polymers for 3D printing implants, and especially PEEK and PMMA.
“Both thermoplastics are inert, biocompatible, and reveal adequate mechanical properties in order to replace bone. PEEK outpaces PMMA in terms of strength, stiffness, and durability. In contrast, PMMA is easily obtainable and affordable,” stated the researchers.
Sandwich structures are popular, with layers varied in terms of orientation and structure, and mechanical properties improved with a structured core ‘to two stiff and thin outer layers.’ In using classic structures though, the researchers reported:
“All tests, regardless of infill density and structure, show a step‐wise failure behavior, which can be seen as several peaks in the force–displacement curves. This is a quite common phenomenon in sandwich structures, since the fracture behavior of the surface layers and the core material is quite different.”
The research team was able to improve stiffness and energy absorption, with the PMMA samples designed with a 50 percent reduction in weight. Internal structure was 3D printed with an infill density of 100 percent.
“Compared to other 50% infill density settings, the topology‐optimized structure performs quite well in terms of dynamic stiffness and FD. Both values are similar to 3D‐HC and higher than rectilinear and gyroid internal structures. However, in terms of overall fracture behavior it is close in shape to 70% 3D‐HC and 100% rectilinear structures, since it fails rather brittle without a pronounced stepwise crack propagation phase,” stated the researchers.
“Concluding the results, it appears that ED in combination with the dynamic stiffness or deformation reached up to this point represent a very critical parameter regarding the designing process of implants. If a high tolerated force level in relation to the absorbed energy is desired, 3D‐HC internal structures at an infill density of 70% and rectilinear structures with an infill density of 100% are recommended at this time.”
3D printing for cranial implants is an ongoing topic of study, as researchers experiment with making them out of titanium, explore the effects of regulation, and further innovations for patient-specific care.
What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.
[Source / Images: ‘Impact Optimization of 3D Printed Poly(methyl methacrylate) for Cranial Implants]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
3D Printing Webinar and Event Roundup: September 8, 2024
In this month’s first 3D Printing Webinar and Event Roundup, things are picking up! There are multiple in-person events this week, including the TETS Symposium, Additive Manufacturing in Medicine, a...
6K Lands $82M for Batteries and 3D Printing Powders in Series E Round
6K, the Massachusetts-based parent company of 6K Energy and 6K Additive, has secured $82 million in the opening of its Series E round, with the round planned to close out...
EOS Expands U.S. Production with EOS M 290 Metal 3D Printer
German powder bed fusion (PBF) leader EOS has unveiled plans to expand its assembly of the popular EOS M 290 metal 3D printer at its Pflugerville, Texas facility, near Austin....
Formlabs Adds Materials, Post-Processing Tools to SLA & SLS 3D Printing Ecosystem
3D printing double unicorn Formlabs is making it easier, and more efficient, for users to print final, consumer-ready parts by streamlining post-processing, and opening up new workflows. Today, the company...