What is Metrology Part 13: Object Recognition

IMTS

Share this Article

3D Perception

We as humans have faulty perception of the physical environment we live in. Although we are able to distinguish 2D items and 3D items, we do not have the ability to measure them in real time with numeric values. We need to use outside devices to assist us. We have discussed at length these topics within our metrology series, but today we will take a look specifically at a subsection of knowledge within this field and computer vision. With computer oriented object recognition, humans are attempting to make the world more precise through the lens of a computer. There are a variety of things that get in the way of precise object recognition.

Object recognition is defined as technology in the field of computer vision for finding and identifying objects in an image or video sequence. Humans have the ability to recognize objects with bare minimal effort, even though an image varies in different viewpoints. The image also varies when it is translated, scaled, and rotated. People are able to recognize images even when they are somewhat incomplete and missing critical information due to an obstruction of view. Humans use the power of gestalt psychology to do such. Gestalt psychology is defined as a German term interpreted in psychology as a “pattern” or “configuration”. 

Gestalt in Practice

Gestalt is based on understanding and perceiving the whole sum of an object rather than its components. This view of psychology was created to go against a belief that scientific understanding is the result of a lack of concern about the basic human details.

The ability for a computer to recognize parts and synthesize them into a larger body object is the main source of error within computer vision and object recognition. This task is extremely challenging for computer vision systems. One must understand that computers have immense capabilities in logically describing constituents or smaller parts, but adding them together consistently to form the basis of a larger item is still difficult. This is personally why I am not too worried about a robot takeover anytime soon. Many approaches to the task have been implemented over multiple decades.

Matlab and object  detection/recognition

For a computer to do sufficient object recognition there needs to be a ton of precision with identifying constituent parts. To do this, a computer relies on a vast amount of point cloud data. A point cloud is defined as a set of data points in space. Point clouds are usually produced by 3D scanners. With this point cloud data, metrology, and 3D builds can be created. An object can be recognized through using point cloud data to create a mesh. For us as humans, we are able to interpret that mesh within our 3D realm. However, computers are not that great at such interpretation. They just give us great and precise data to work with. It is important to note that computers are okay at object detection. This refers to being able to decipher a part or object within a larger scene. But when we place multiple parts into a scene or an item with a complex geometry, things become difficult for a computer to decipher. Hence we only use 3D scanners to grab point cloud data and not process what a 3D object is. 

Currently in terms of object recognition, computers can barely recognize larger scale items within a 2D setting. It will take a long time for computers to have the graphic capabilities to even decipher what an object would be in a 3D environment. For example, MATLAB is a powerful coding software used for large scale data processing, but computers require a large amount of machine learning and deep learning techniques to process 2D images. First these systems need to do this at a rate of 99.9% confidence before one can move on to 3D images. Humans are not necessarily 100% accurate in terms of processing images either, but they are still slightly more consistent than computer vision techniques. Overall I am interested in learning how to develop such technologies, and I wonder who are the people and organizations wrestling with these problems daily.

Share this Article


Recent News

Liquid Metal 3D Printing Sector Emerges with Fluent Metal’s $5.5M Investment

3DPOD Episode 191: Amy Alexander, 3D Printing at the Mayo Clinic



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3DPOD Episode 190: Generative Design for 3D Printing with Novineer CEO Ali Tamijani

Ali Tamijani, a professor in the Department of Aerospace Engineering at Embry-Riddle Aeronautical University, has an extensive background in composites, tool pathing, and the development of functional 3D printed parts,...

Featured

3DPOD Episode 189: AMUG President Shannon VanDeren

Shannon VanDeren is a consultant in the 3D printing industry, focusing on implementation and integration for her company, Layered Manufacturing and Consulting. For nearly ten years, she has been involved...

3DPOD Episode 188: Clare Difazio of E3D – Growing the Industry, and Growing With the Industry

Clare DiFazio’s journey into the 3D printing industry was serendipitous, yet her involvement at critical moments has significantly influenced the sector. Her position as Head of Marketing & Product Strategy...

Featured

Printing Money Episode 15: 3D Printing Markets & Deals, with AM Research and AMPOWER

Printing Money returns with Episode 15! This month, NewCap Partners‘ Danny Piper is joined by Scott Dunham, Executive Vice President of Research at Additive Manufacturing (AM) Research, and Matthias Schmidt-Lehr,...