AMS Spring 2023

The International Space Station Has a New Partner in Regenerative Medicine

6K SmarTech

Share this Article

Scientific investigations conducted by people on the International Space Station (ISS) are currently contributing to our knowledge in many fields.

The research alliance between the University of Pittsburgh’s (Pitt) McGowan Institute for Regenerative Medicine (MIRM) and the ISS is a great example of the ultimate vision of a space development that could result in the advancement of biomedical products in space, which could ultimately benefit human health on Earth and eventually push forth the discoveries of space-based science.

In 2018, NASA approached researchers at the McGowan Institute, in Pennsylvania, to lead a multi-year effort, and earlier this month, the alliance (a core element of the ISS National Laboratory Industrial Biomedicine Program) was unveiled at the 8th annual ISS Research and Development Conference held in Atlanta. The new partnership will evoke the principles of microgravity and its effect on regenerative medicine-based therapies as research moves to the orbiting laboratory and scientists continue to experiment with 3D printing in space.

The ISS provides a unique platform to conduct studies in a microgravity environment and this new partnership will serve as a benchmark for how the ISS National Laboratory develops similar programs in the future involving research and development activities aboard the space station.

“As the premier partner for the Industrial Biomedicine Alliance with the ISS National Laboratory, we look forward to using the space station as a testbed for regenerative medicine advances and product development in Low Earth Orbit,” said William Wagner, McGowan Institute Director.

William Wagner

According to the ISS National Lab, McGowan Institute will collaborate with partners from industry, other academic research centers, and government agencies to drive the progress of regenerative medicine research onboard the ISS. As part of the endeavor, the University of Pittsburgh will also develop Earth-based facilities on campus to advance research and meet with potential partners while working in coordination with the ISS about flight opportunities to the orbiting laboratory.

Scientists will look to exploit the unique behavior of stem cells in microgravity to improve cell-based therapies for a variety of diseases and impairments, including traumatic brain injury and type I diabetes. Similarly, microgravity could allow 3D printers to create complex tissue structures that are difficult to achieve in the presence of full gravity.

“The McGowan Institute has built on its deep history advancing the development of artificial organs to establish a position of internationally recognized leadership in regenerative medicine,” suggested Rob Rutenbar, Senior Vice Chancellor for Research at the University of Pittsburgh. “The ISS National Lab will benefit from that deep expertise, as well as our commitment to rapid clinical translation.”

In its 26-year existence, the McGowan Institute has issued 140 patents, filed more than 900 invention disclosures and spun out nearly 30 companies from the university, changing the way patients are treated for a wide range of diseases and injuries. With so many startups coming from their research, it’s probably safe to say that future alliances with the ISS will bring private companies and research partners to fund their own projects, which usually seek to better understand and find solutions in space to common problems on Earth. Actually, the products of the ISS Industrial Biomedicine Program and this research partnership will help build the fundamental business case for the industrialization of crewed platforms in low Earth orbit.

ISS National Laboratory Chief Strategy Officer, Richard Leach, explained that “part of the role of the ISS National Laboratory is to create and implement innovative strategies to enhance the research capacity of the orbiting lab, and we believe alliances like this will pave the way for future collaborations to advance the discoveries of space-based science.”

At the beginning of the year, Wagner – who is also professor of surgery, bioengineering and chemical engineering at Pitt – said that the Institute’s philosophy is to get the technology to the patient, and emphasized that “if what we do does not impact patients’ lives, we’ve not fulfilled our mission”. It appears that this clever partnership might be just what the institute needs to scale up their work on stem cell research, tissue engineering of biomaterials and eventually bioengineering organs with 3D printing.

[Images: University of Pittsburgh’s McGowan Institute and ISS]

Share this Article


Recent News

3D Printing News Unpeeled: Warhammer, AVIC and Pearson Lloyd

Fire at Icon’s House 3D Printing HQ Highlights Need for Decentralized Supply Chains



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Concrete Dreams: Let’s 3D Print Money, not Houses

I’m rather unsure about the potential of 3D printing houses. I know that it is the right thing for the press: additively manufacturing (AM) homes and solving the housing crisis...

How Can 3D Printing Alleviate the Construction Industry’s Social, Climate, and Environmental Challenges?

Global housing shortages, a lack of skilled workers, and the need to reach carbon neutrality by 2050—the construction industry faces a tripled-edged sword. Industry leaders must use their experience to...

3D Printing News Unpeeled: ICON, RAF, Renishaw and Stratasys

Stratasys gets a Victrex PAEK material for its 450MC system, a bunch of new colors of Ultem 9085, a flame retardant polycarbonate and more. The OpenAM software will also let...

Fleet of 3D Printers Begin Building Housing Community in Texas with Construction Giant Lennar Corp and ICON

As 2022 comes to an end, additive construction (AC) companies all over the world are announcing a flurry of upcoming projects. The most recent of these is also one of...