South Africa: FEA & Compression Testing of 3D Printed Models

Share this Article

Researchers D.W. Abbot, D.V.V. Kallon, C. Anghel, and P. Dube delve into complex analysis and testing in the ‘Finite Element Analysis of 3D Printed Model via Compression Tests.’ For this study, the researchers used an FEA tool for simulation and testing of 3D printed parts, with a central focus on experimenting with ‘specific imposed conditions’ on the sample models—employing a strategy that allows for much faster, more affordable assessment of parts.

FEA allows researchers (and ultimately, manufacturers) to prove a variety of different prototypes created through other methods—but now a serious focus is being placed on parts printed in numerous different materials, to include ABS, PLA, and more. Square block samples were chosen for the study due to the potential for better accuracy and distribution of stress along surfaces—with the goal of allowing engineers to finally ‘trust’ FEM in terms of 3D printed objects.

Properties of some 3D printing materials.

Compression testing involved labeling 3D printed samples as either isotropic or anisotropic, with a focus on avoiding anisotropy and inter-layer voids. In examining the samples, the researchers were able to see the internal structures of FDM 3D printed parts, along with evaluating densities. Both experimental and computational tests were performed.

(left) 15% quality prototype in ABS, (right) 85% quality prototype in ABS

“Results obtained using Autodesk Inventor are compared to the experimental test results. The arrow represents the direction in which the load has been applied to that of the axes experiencing the load. The horizontal axes, the original axis that the objects are printed on, representing an axially distributed load from above, against the grain of the layers, the vertical axis represents an axial load that would be experienced from the side of the test specimen, with the grain of the layers.”

FEA is centered around both the materials and techniques used, along with design—and the researchers point out that this could be different depending on the simulation software used. Both porosity and adhesion are both issues too. The researchers continued to note the ‘large discrepancy’ also between both experimental and simulated results, with test pieces exhibiting 50 percent more solidity than the experimental samples.

(left) before applied load, (right) after applied load

On noting that samples ‘behaved poorly’ regarding horizontal/perpendicular loads, the researchers realized the 3D printed block samples were anisotropic. Infill simulated results and experimental results differed greatly too, as the Autodesk design and simulation were viewed as a solid (instead of porous) object; in fact, in some cases, the samples were not similar at all.

Practical test results

In observing samples (or functional parts), it is critical to evaluate:

  • Area of application
  • Environment of use
  • Operational associated stress at specific axis

“The results obtained from this study on different materials at different applied loads across the two different layering axes showed a large variation in compressive strength,” concluded the researchers. “This establishes that the design of 3D parts strongly depends on the application of the part.”

While 3D printing offers a wide range of benefits, the ability to edit designs and create one iteration after another at will is one of the greatest draws in comparison to more conventional methods of production. Researchers today are engaged in many different types of feasibility studies, ways to introduce new workflow features and learn more about cost analyses.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

Maximum displacement at 12200N for ABS Plastic using Autodesk Inventor

[Source/Images: ‘Finite Element Analysis of 3D Printed Model via Compression Tests’]

Share this Article


Recent News

3D Printing News Briefs, April 22, 2021: Philips Lighting, Cerambot, Revotek & UTHSC, ENS Lyon, Université de Lorraine, & University of Victoria

Morf3D Launches New 3D Printing Facility in California



Categories

3D Design

3D Printed Art

3D Printed Guns

3D Printer Reviews


You May Also Like

Featured

Nikon Buys Metal 3D Printing Startup Morf3D

This was not a merger and acquisition that Executive Editor Joris Peels predicted, but we can give him props for anticipating that Nikon might aid in the breakup of Renishaw...

LimaCorporate and HSS Open First Hospital-Based Facility for 3D Printed Implants

In 2019, global orthopedics manufacturing company LimaCorporate S.p.A. and the Hospital for Special Surgery (HSS), the top-ranked orthopedic hospital in the United States, announced that they were partnering to establish the...

Featured

Dream 3D Printing Mergers and Acquisitions: Renishaw

Renishaw’s owners have put the metrology and metal printing firm up for sale. With comparatively few powder bed fusion players of note, this is bound to attract some attention. But,...

3D Systems to Expand South Carolina 3D Printing Facility

It’s been a rather tumultuous time for 3D Systems (NYSE: DDD), with two new CEOs and two major reorganizations in just four years. Late last summer, the company, with Dr....


Shop

View our broad assortment of in house and third party products.