3D Printing and the Circular Economy Part 6: CNC Machining

Share this Article

Desktop Metal CNC

CNC machining is a manufacturing process in which pre-programmed computer software dictates the movement of factory tools and machinery. The process can be used to control a range of complex machinery, from grinders and lathes to mills and routers. With CNC machining, three-dimensional cutting tasks can be accomplished in a single set of prompts. CNC refers to computer numerical control. Today we will be comparing CNC methods to 3D Printing and additive manufacturing in terms of their places within a circular economy. 

Transportation waste is not as large of a concern when it comes to CNC machining. It is important to have one’s material ready before they are to place the material within a CNC center. The layout of one’s factory or fabrication environment is more critical towards this type of waste. Similar thoughts can be arrived at in terms of additive manufacturing. Based on the types of material used for a CNC machine, it is slightly difficult to transport larger amounts of the metals used for these machines. 

Inventory waste is mostly oriented towards what material you are using for the CNC process. Typically we are using metal materials. The type of materials typically used consist of brass, copper alloys, aluminum, steel, stainless steel, titanium, and plastics. The type of material is very important because of production needs. CNC machining is a subtractive process. Hence, the various materials will cause different shearings as well as carving residue and debris that will be produced during a cutting out of a piece. 

Image result for cnc machine debris

CNC Waste

Waiting time in terms of CNC machining depends on the feed rate. Feeds specifically refers to the feed rate the tool advances through the material while speed refers to the surface speed that the cutting edge of the tool is moving and is needed to calculate the spindle RPM. Feed is generally measured in Inches Per Minute (IPM) in the US and speed is measured in Surface Feet per Minute. Feed speed as well as material density causes the amount of wait time to differ per manufactured part. Part geometry also has a role to play here as well as hardness. A CNC typically is faster than a 3D printer device, but this is again dependent on material and geometry. 

Over-processing is not as much of a concern for both of these methods of manufacturing. CNC machining and 3D printing are both great at building quick prototypes of designs. Over-processing can become problematic in CNC when one wants to make very polished cuts of a material to have sharper edges and rounded surfaces. There may be an element of over-processing there that leads to time wasted. 

Post processing is a big issue when it comes to 3D printers. Post processing issues are not as apparent with CNC parts. They typically are ready for deployment after they have been produced with excellent surface finishes. 

Image result for cnc waste

CNC Carvings

Recyclability is apparent with various CNC waste materials post production. It is important to be constantly aware of the different products used. In order to recycle, it necessitates the separation of materials. This requires bins oriented towards specific materials labelled clearly near a CNC machine. Without this, most of the scrap will be left unattended and mix together to a point of difficult separation. 

Overall the differences between CNC machines and 3D print are considerable. The sheer amount of waste material produced by a typical CNC is way more than a 3D printer. There are efficiency trade offs that are associated with 3D printers in terms of speed and material transportation. In the future advances to additive manufacturing will shrink the gap in terms of creating products in a more sustainable and additive manner versus a subtractive fashion.

Share this Article


Recent News

3D Printing Webinar and Event Roundup: May 9, 2021

3D Printing News Briefs, May 8, 2021: nTopology, Tohoku University, Washington State University



Categories

3D Design

3D Printed Art

3D Printed Guns

3D Printer Reviews


You May Also Like

Graphene 3D Printing Enables Water Treatment Applications

Aerogels, formed by replacing the liquid in a gel material with a gas so the solid remains the same size, are extremely porous, lightweight yet strong solids, not dissimilar in...

3D Printed Artificial Leaves Could Generate Oxygen on Mars

Researchers at the Delft University of Technology (TU Delft) have developed a method for bioprinting algae to create living, photosynthetic materials that are tough and resilient. The resulting study, published...

3D Printing News Briefs, May 2, 2021: Intech; 3DPrinterOS & Octoprint; BEAMIT; ITB, ITK, & University of Manchester; Makerbot; Satori & Oxford University

We’re going to take care of business first in today’s 3D Printing News Briefs, and then move on to some research and education. Intech Additive Solutions is reporting multiple orders...

TU Wien & Cubicure Develop Ivory Substitute for 3D Printing Restoration Pieces

Ivory, a hard, white material consisting mainly of dentine, makes up the tusks of several large animals, such as walruses, narwhals, and elephants. For a long time, the material was...


Shop

View our broad assortment of in house and third party products.