3D Printing and the Circular Economy Part 6: CNC Machining

Share this Article

Desktop Metal CNC

CNC machining is a manufacturing process in which pre-programmed computer software dictates the movement of factory tools and machinery. The process can be used to control a range of complex machinery, from grinders and lathes to mills and routers. With CNC machining, three-dimensional cutting tasks can be accomplished in a single set of prompts. CNC refers to computer numerical control. Today we will be comparing CNC methods to 3D Printing and additive manufacturing in terms of their places within a circular economy. 

Transportation waste is not as large of a concern when it comes to CNC machining. It is important to have one’s material ready before they are to place the material within a CNC center. The layout of one’s factory or fabrication environment is more critical towards this type of waste. Similar thoughts can be arrived at in terms of additive manufacturing. Based on the types of material used for a CNC machine, it is slightly difficult to transport larger amounts of the metals used for these machines. 

Inventory waste is mostly oriented towards what material you are using for the CNC process. Typically we are using metal materials. The type of materials typically used consist of brass, copper alloys, aluminum, steel, stainless steel, titanium, and plastics. The type of material is very important because of production needs. CNC machining is a subtractive process. Hence, the various materials will cause different shearings as well as carving residue and debris that will be produced during a cutting out of a piece. 

Image result for cnc machine debris

CNC Waste

Waiting time in terms of CNC machining depends on the feed rate. Feeds specifically refers to the feed rate the tool advances through the material while speed refers to the surface speed that the cutting edge of the tool is moving and is needed to calculate the spindle RPM. Feed is generally measured in Inches Per Minute (IPM) in the US and speed is measured in Surface Feet per Minute. Feed speed as well as material density causes the amount of wait time to differ per manufactured part. Part geometry also has a role to play here as well as hardness. A CNC typically is faster than a 3D printer device, but this is again dependent on material and geometry. 

Over-processing is not as much of a concern for both of these methods of manufacturing. CNC machining and 3D printing are both great at building quick prototypes of designs. Over-processing can become problematic in CNC when one wants to make very polished cuts of a material to have sharper edges and rounded surfaces. There may be an element of over-processing there that leads to time wasted. 

Post processing is a big issue when it comes to 3D printers. Post processing issues are not as apparent with CNC parts. They typically are ready for deployment after they have been produced with excellent surface finishes. 

Image result for cnc waste

CNC Carvings

Recyclability is apparent with various CNC waste materials post production. It is important to be constantly aware of the different products used. In order to recycle, it necessitates the separation of materials. This requires bins oriented towards specific materials labelled clearly near a CNC machine. Without this, most of the scrap will be left unattended and mix together to a point of difficult separation. 

Overall the differences between CNC machines and 3D print are considerable. The sheer amount of waste material produced by a typical CNC is way more than a 3D printer. There are efficiency trade offs that are associated with 3D printers in terms of speed and material transportation. In the future advances to additive manufacturing will shrink the gap in terms of creating products in a more sustainable and additive manner versus a subtractive fashion.

Facebook Comments

Share this Article


Recent News

3D Printing in Construction: French Startup XtreeE Announces New Facility in Dubai

NRC Canada Partnering with Polycontrols to Scale Up Cold Spray Additive Manufacturing



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing News Briefs: July 19, 2019

We’ve got a new partnership to tell you about in today’s 3D Printing News Briefs, followed by a software update and some news about 3D printing in the hospital. FIT...

Interview with Formalloy’s Melanie Lang on Directed Energy Deposition

When I met Melanie Lang at RAPID a lot of the buzz on the show floor was directed at her startup Formalloy. Formalloy has developed a metal deposition head that...

Sandvik Acquires Substantial Holdings in Beam IT—Expanding Additive Manufacturing Presence

Sandvik continues to add to their high-tech offerings, as well as expanding Sandvik Additive Manufacturing with the recent investment in Beam IT. The Sweden-headquartered engineering group, specializing in metals, additive...

PEEK, PEKK and ULTEM May Just be the 3D Printing Thermoplastics You Need in Your Life

There was definitely life before plastics, but today we can’t imagine living without them. Before they were even invented (the first synthetic polymer was developed in 1869 by John Wesley...


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!