Chinese researchers investigate the benefits of using biodegradable polymers for scaffolds, outlined in ‘Fabrication and characterization of porous polycaprolactone scaffold via extrusion-based cryogenic 3D printing for tissue engineering.’ Explaining that there have historically been limitations due to issues like affordability, lack of efficiency in fabrication, and inferior process control, the authors of the study endeavor to improve on previous attempts to use 3D porous PCL scaffolds through combining extrusion-based cryogenic 3D printing with freeze-drying approaches.
Tissue engineering (TE) is a broad field today and one that is expansive with research and many different goals—most of which end in the ultimate discovery of a way to create sustainable bioprinted organs for transplantation. In creating or regenerating tissue, scientists usually work with scaffolds, living cells, and other ‘bioactive factors.’ Structures like scaffolds must be biocompatible, and obviously non-toxic too if they are being implanted into a human patient. Polycaprolactone (PCL) is a commonly used polymer in creating scaffolds, suitable due to features like:
- Biodegradability
- Biocompatibility
- Low melting point
- Good strength
- Good solubility
The researchers explain that extrusion-based cryogenic 3D printing (ECP) is gaining more popularity as a choice for bioprinting because it allows for greater strength in scaffolds, whether they are made of collagen, chitosan, PLGA, or other materials. In this study, the authors used ECP to fabricate PCL scaffolds and then study the results.
To ensure success in printing, the researchers relied on several different treatments, to include using a rough-surfaced glass slide as a collector, adding a transitional path at the corners of the adhesive area, and scrubbing slides with ethanol, to begin with. Porosity was measured, with results showing an increase due to ‘widening of filament offset.’
In terms of measuring biocompatibility, the researchers found that while cell attachment was ‘not well promoted’ at first, cell proliferation was ‘effectively facilitated’ because of the rough surface and porosity of scaffolds.
“Although more stretched cells were found on the surface of EMP group after 7 days, the number of cells on ECP scaffolds were much higher and their morphologies become more stretched as compared to the ones at day 3,” concluded the researchers. “Thus, it can be concluded that PCL scaffolds fabricated via ECP are highly biocompatible and better support cell adhesion and proliferation as compared to EMP scaffolds.
“Overall, the fabricated PCL scaffold, with such improved structural, physico-chemical, and biological features, can be a promising candidate for tissue engineering applications.”
Tissue engineering takes many forms today, from heart tissue engineering to bone tissue engineering to tailored skin grafts. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.
[Source / Images: ‘Fabrication and characterization of porous polycaprolactone scaffold via extrusion-based cryogenic 3D printing for tissue engineering’]Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Amnovis 3D Prints 50,000 Implants without Heat Treatment
Amnovis has announced that it has produced 50,000 implants using its proprietary heat-treatment-free 3D printing process. These implants have been used in the spine, orthopedics, and CMF markets since 2021....
3D Printing News Briefs, September 12, 2024: Scholarships, Pool Maintenance, Shoes, & More
In 3D Printing News Briefs today, four graduate students received $10,000 scholarships from ASTM International, and 3DPRINTUK announced the first commercial launch of the Stratasys SAF printer in the UK....
HILOS Launches Studio OS for AI-Driven 3D Printed Shoe Design
At Milan Design Week, footwear 3D printing startup HILOS has unveiled its latest development, Studio OS. Introduced at the historical Villa Bagatti Valsecchi, the platform is meant to redefine how...
Further Understanding of 3D Printing Design at ADDITIV Design World
ADDITIV is back once again! This time, the virtual platform for additive manufacturing will be holding the first-ever edition of ADDITIV Design World on May 23rd from 9:00 AM –...