Researchers from Switzerland explain more about how metals dissolved and re-deposited in liquid solvents can further AM processes by promoting fabrication without post-processing. Their findings are outlined in the recently published, ‘Multi-metal electrohydrodynamic redox 3D printing at the submicron scale.’ This new method allows users to create polycrystalline multi-metal 3D structures from a single nozzle with multiple channels.
The authors point out that additive manufacturing on the microscale is very popular, and especially with expanded capabilities in relation to materials. Users want more—and especially on the industrial level; realistically though, challenges still abound:
“…first, common multi-nozzle approaches enforce extensive practical limits to the complexity of the 3D chemical architecture; second, as-deposited properties of inorganic materials, mostly dispensed as nanoparticle inks, are often far from those demanded in microfabrication, and the hence required post-print processing largely complicates many materials combination,” state the researchers.
The ink-free electrohydrodynamic redox printing (EHD-RP) eliminates these issues in metal, with direct printing and combination of materials from one nozzle. The authors say that their new method offers ‘unmatched control of the 3D chemical architecture of printed structures.’ Many different metals can be used in EHD-RP, with both direct and indirect printing possible.
The authors mention that while there is very little lateral misalignment during switching, there has been some indication of minor shifting between the two metals. The authors state that this is usually caused because of the nozzle’s asymmetry. Complexity in geometry and fidelity are not as high as the authors would like either, but they state that this is a common issue in EHD-based microprinting techniques.
This process also improves mechanical and electrical properties, allowing for potential in applications for manufacturing sensors or actuators, optical metamaterials, and small-scale wire bonding. For this study, the researchers only used three metals, but that number could be increased with the use of nozzles bearing additional channels.
“Thus, EHD-RP holds the potential for unlocking unique routes for the bottom-up fabrication of chemically designed 3D devices and materials with locally tuned properties and a rational use of alloying elements. Such materials could find application in catalysis, active chemical devices, small-scale robotics and architected materials that go beyond single-material cellular designs,” concluded the researchers.
While you may look at a term like electrohydrodynamic redox 3D printing and think things are really getting out there now, the idea behind the process is very simple, but two-fold: to both refine 3D printing and additive manufacturing further—and cutting out the much-dreaded post processing processes still prevalent. Researchers have been working on this issue continually, from creating post-processing hardware, to eliminating post processing from color 3D printing to providing automation for dental printers.
Find out more about electrohydrodynamic redox 3D printing here. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.
[Source / Images: ‘Multi-metal electrohydrodynamic redox 3D printing at the submicron scale’]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
3D Printing Market Reaches $3.45B in Q2 2024, Marking 8.4% Year-Over-Year Growth
The global 3D printing market continued its upward trajectory in the second quarter of 2024, totaling $3.45 billion—a year-over-year increase of 8.4%. Despite a slight sequential decline from $3.47 billion...
New ABB Cobots Are 10 Times More Accurate for 3D Printing and More
ABB has introduced Ultra Accuracy GoFa cobots, which are ten times more accurate than the company’s previous cobots. While older industrial robots have driven innovation in concrete 3D printing, wire...
AM Expands Beyond 3D Printing at IMTS 2024
As discussed in our previous article on the Western hemisphere’s largest manufacturing trade show, the International Manufacturing Technology Show (IMTS), the industrialization of 3D printing was on display. This was...
Ursa Major & US Navy Make $25M Joint Investment in New 3D Printed Rocket Motor Prototype
Ursa Major, the Colorado-based company dedicated to building a North American rocket propulsion supply chain with advanced manufacturing, has become one of the first recipients of funding from the DoD’s...