Purdue Researchers Create Soft Robotics Users Can Customize & Make Using 3D Printing

Share this Article

Researchers have patented promising new robotics technology created through the Purdue Office of Technology Commercialization, and outlined in ‘3D Architected Soft Machines with Topologically Encoded Motion.’ Authors Debkalpa Goswami, Shuai Liu, Aniket Pal, Lucas G. Silva, and Ramses V. Martinez have developed robotic devices that can be 3D printed and customized by users, depending on their needs.

This technology may both surprise and fascinate users, who in the past have expected robots to make things for them—but they may not have expected to be the ones creating the robots from home or the workshop. A 3D printed robot, while not completely able to protect users, can at least communicate with them, ask basic questions, and sense movement such as a fall, acting as a more complex panic button in these cases.

“Unfortunately, the external hard structure of current caregiving robots prevents them from a safe human-robot interaction, limiting their assistance to mere social interaction and not physical interaction,” said Ramses Martinez, assistant professor at the School of Industrial Engineering and in the Weldon School of Biomedical Engineering in Purdue’s College of Engineering. “After all, would you leave babies or physically or cognitively impaired old people in the hands of a robot?”

Purdue University researchers have developed a new design method to create soft robots (Artist rendering by Ramses Martinez)

Users can create their own CAD files, shaping the robot, and then designating what types of movements it will make. The researchers have created a customized algorithm that converts the data into a 3D architected soft machine (ASM). And indeed, this opens a brave new world to users everywhere as they can print the robots on virtually any 3D printer.

The fabricated ASMs can mimic human locomotion, operated with tiny motors that rely on nylon to pull the limbs back and forth. The researchers state that these customized robots and their soft materials can be stretched to beyond 900 percent of their initial length.

“ASMs can perform complex motions such as gripping or crawling with ease, and this work constitutes a step forward toward the development of autonomous and lightweight soft robots,” Martinez said. “The capability of ASMs to change their body configuration and gait to adapt to a wide variety of environments has the potential to not only improve caregiving but also disaster-response robotics.”

While users can 3D print customized robotics, the actual forms created move in the realm of the 4D, responding and morphing with their own environment. The researchers state that they can perform a wide range of motion, depending on need.

“The topological architecture of these low‐density soft robots confers them with the stiffness necessary to recover their original shape even after ultrahigh compression (400%) and extension (500%),” state the researchers in their paper. “ASMs expand the range of mechanical properties currently achievable by 3D printed or molded materials to enable the fabrication of soft machines with auxetic mechanical metamaterial properties.”

You don’t have to be an engineer or a techno-geek to understand that today (which used to be that distant, faraway future) has not yielded the type of progress we expected from robotics. And while we are not being served and accompanied 24/7 by charismatic androids, significant and interesting developments have certainly been achieved—from 3D printed robots that pick up trash for us, to construction robots—and even swarms of robots doing the 3D printing work for us. The picture may be different from what we imagined, but in the end—far more spectacular. Find out more about the recent research in soft robotics here, serving as part of the university’s Giant Leaps celebration in connection with their 150th anniversary.

Purdue researchers have developed a new design method that will enable anyone to quickly design and fabricate soft robots using a 3D printer (Photo credit: Purdue University)

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: Purdue University]

Share this Article


Recent News

Nexa3D Acquires NXT Factory, Introduces Eco-Friendly 3D Printing Washing Solvent

RENA Acquires HES Hirtisation Segment for Post-Processing for Metal 3D Printing



Categories

3D Design

3D Printed Art

3D printed automobiles

3D Printed Food


You May Also Like

NTU Singapore: Robotic Post-Processing System Removes Residual Powder from 3D Printed Parts

Researchers from Nanyang Technological University in Singapore wrote a paper, titled “Development of a Robotic System for Automated Decaking of 3D-Printed Parts,” about their work attempting to circumvent a significant...

Comparing Surface Finish and Post-Processing Methods for SLM 3D Printed Parts

It’s not easy to produce parts that contain internal cooling channels using traditional manufacturing methods, which makes 3D printing an attractive option for easy, precise integration of these channels –...

Dental College of Georgia: Examining Photoinitiator Types in 3D Printing Resins

Researchers from the Dental College of Georgia, Augusta University, are exploring better ways to perform dental restoration, detailing their findings in the recently published ‘Photoinitiator Types Among a Variety of...

Align Technology Acquires exocad, Dental CAD/CAM Software Vendor in €376 Million Deal

Align Technology acquires Global Dental CAD/CAM software firm, exocad. Known for their dental CAD/CAM solutions, exocad will strengthen Align’s presence among dentists, labs, and partners around the globe. The two...


Shop

View our broad assortment of in house and third party products.