nScrypt and Sciperio Secure US Patent for Scalable Hybrid 3D Printing System

RAPID

Share this Article

Florida manufacturer nScrypt develops high-precision micro-dispensing and direct digital manufacturing equipment and solutions for a range of industries. Just a few months ago, its research and development think tank Sciperio, which specializes in cross-disciplinary solutions, was awarded a second phase contract from the US Air Force for its 3D printed conformal phased array antennas project. Now we’ve learned that together, nScrypt and Sciperio have secured a patent for large-scale precision manufacturing.

nScrypt is actually a spin-out company from Sciperio, which created technology that nScrypt commercialized under the Mesoscopic Integrated Conformal Electronics (MICE) program with the Defense Advanced Research Projects Agency (DARPA). Their new U.S. Patent No. 10,162,339 B2 for “Automated manufacturing using modular structures and real-time feedback for precision control,” which has 15 dependent and 3 independent claims, is for a scalable machine and process that will combine additive and traditional manufacturing processes for the fabrication of large, highly precise parts. nScrypt’s CEO Dr. Ken Church is the lead inventor, and his co-inventors are Engineering Manager and R&D lead Paul Deffenbaugh; Electrical Engineer Josh Goldfarb; Charles (Mike) Newton, who heads up nScrypt’s Cyberfacturing Center; and Mechanical Designer Michael Owens.

“We saw a need for a Direct Digital Manufacturing system that can make large parts with high precision and tight tolerances,” explained Dr. Church. “This patented system, which can be assembled from standard girders to make it scalable at a reasonable price, combines multiple motion control systems, computer control, and sensors that provide continuous feedback to tweak the 3D printing or traditional manufacturing process for large, high-precision parts.”

The patent, which was filed by Sciperio in April of 2016, is officially effective as of December 25, 2018, with the adjusted expiration date set as May 12, 2036.

Both the hybrid machine, and its new process, use either modular girders or a rigid frame, together with three motion systems controlled by a computer and coordinated by numerous sensors that offer continuous, closed-loop feedback in real time that allow for very small XYZ manufacturing adjustments. The system can be scaled from the smallest fraction of a meter up to hundreds of meters, thanks to the standard girders that make up the frame; this enables the manufacturing of precise, large parts at nanometer resolution.

Block diagram illustrating an apparatus which includes a plurality of motion systems and sensors.

The abstract for the patent states, “The first computer controlled motion system and the second computer controlled motion system use information from the plurality of sensors to assist in coordination between the first computer controlled motion system and the second computer controlled motion system.”

One of the motion control systems is in charge of how and when the gantry moves, while the second is in control of the movement of the part currently being built. The last motion control system runs an additional gantry, which holds either the traditional or the additive manufacturing tool head, depending on what’s being built. This second gantry actually rides on the first gantry, while a system controller uses data collected by the sensors to coordinate the multiple motion systems in real time. What’s interesting is that if these systems move out of place, they are able to adjust themselves back into the proper position.

A diagram from the patent, with a human for scale.

“The implications of this are making large, very large and ultra large gantry or motion platforms that have very crude motion specifications (hundreds of microns to hundreds of millimeters) and adding a second fast gantry system with extreme precision (nanometers to microns) and using sensors to obtain large area prints with extreme precision tolerances in the prints, the milling, the polishing, the drilling, surface finishing, the additive, the subtractive or any part of an automated manufacturing process,” the patent reads.

As for the elements that make up the machine itself, the motion sensors can be any mechanisms that are moved in the XYZ axes by computers, like ball screw drives, belt drives, and linear motor drives. The sensors can be acoustic, laser, optical, RF, or semi-conductive, while the tool heads for the machine can be for conventional manufacturing tasks like polishing, milling, and cutting, or 3D printing material extruders and micro-dispensing.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

Share this Article


Recent News

3D Printing Webinar and Event Roundup: May 19, 2024

3D Printing News Briefs, May 18, 2024: Sustainability, Mass Spectrometry, & More



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Unpeeled: Biofuel Waste to Filament & Sustainable Photopolymers

I can’t ever remember a day with so many potentially high impact news stories have come out. In one story, we all know that there are problems with the safety...

Finnair Hires AM Craft to 3D Print Plastic Parts for Aircraft Interiors

Riga-based AM Craft, a supplier specialized in 3D printing aviation components and certified under EASA Part 21G, announced a significant achievement today. The company will assist in upgrading Finnair’s A320...

3DPOD Episode 198: High Speed Sintering with Neil Hopkinson, VP of AM at Stratasys

Neil Hopkinson, a pioneering 3D printing researcher, played a pivotal role in developing a body of research that is widely utilized today. He also invented High Speed Sintering (HSS), also...

3D Printing Webinar and Event Roundup: May 12, 2024

Webinars and events are picking up in the AM industry this week! ASTM International continues its Professional Certificate Course and Stratasys continues its advanced in-person trainings, while 3D Systems is...